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Abstract

In this paper, we discuss the mechanism of spontaneous symmetry breaking from the point
view of vacuum pairs, considered as ground states of a Yang-Mills—Higgs gauge theory. We treat
a vacuum as a section in an appropriate bundle that is naturally associated with a minimum of a
(general) Higgs potential. Such a vacuum spontaneously breaks the underlying gauge symmetry
if the invariance group of the vacuum is a proper subgroup of the gauge group. We show that
each choice of a vacuum admits to geometrically interpret the bosonic mass matrices as “normal”
sections. The spectrum of these sections turns out to be constant over the manifold and independent
of the chosen vacuum. Since the mass matrices commute with the invariance group of the chosen
vacuum one may decompose the Hermitian vector bundles which correspond to the bosons in the
eigenbundles of the bosonic mass matrices. This decomposition is the geometrical analog of the
physical notion of a “particle multiplet”. In this sense, the basic notion of a “free particle” also
makes sense within the geometrical context of a gauge theory, provided the gauge symmetry is
spontaneously broken by some vacuum.

We also discuss the Higgs—Kibble mechanism (“Higgs Dinner”) from a geometrical point of
view. It turns out that the “unitary gauge”, usually encountered in the context of discussing the
Higgs Dinner, is of purely geometrical origin. In particular, we discuss rotationally symmetric
Higgs potentials and give a necessary and sufficient condition for the unitary gauge to exist. As a
specific example, we discuss in some detail the electroweak sector of the Standard Model of particle
physics in this context.
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1. Introduction

We consider the mechanism of spontaneous symmetry breaking from a geometrical view-
point. For this we treat “elementary particles” as (a gauge equivalence class of) Hermitian
vector bundles over an orientable spacetimé, g\). Here,gnm is an arbitrary but fixed
(pseudo)metric (see also, for instafi@p. The possible states of the particles are geometri-
cally represented as sections of the corresponding vector bundles. The gauge group is then
given by the subgroup of automorphisms of these bundles which induce the identity map
on the spacetime manifold. In the present paper, we shall focus on bosons only. We also
restrict ourselves to the case of a pure Yang-Mills—Higgs gauge theory. We characterize
such a gauge theory by a specific set of geometrical data. In particular, the gauge group will
be identified with the gauge group of a princigalbundleP(M, G). From the given data
we build two bundles, one of which geometrically represents the Higgs boson. Correspond-
ingly, we call this bundle the “Higgs bundle”. The other bundle, which we call the “orbit
bundle”, is a certain sub-bundle of the Higgs bundle. Secfidatthe orbit bundle physi-
cally represent possible ground states of the Higgs boson. In fact, these sections minimize
the Higgs potential which we also treat as a globally defined object. Accordingly, we call
such a sectiof¥ a “vacuum section”.

From a geometrical perspective, a vacuum section is in one-to-one correspondence with
an H-reduction ofP(M, G). Here, the (closed) subgroup C G corresponds to the stabi-
lizer group of some minimureg of a general Higgs potentidy. Therefore, this subgroup
gives rise to the invariance group of the “vacuum” which is defined by the seéfioa by
a ground state of the Higgs boson). As usual, if the invariance group is a subgroup of the
gauge group, we call the latter spontaneously broken by the vacuum.

We then introduce the notion of “vacuum pairs”. They consist of vacuum sedtiansd
connectionsz on the Higgs bundléy which are compatible withy. Let d be the covariant
derivative with respect t&. Then, the vacuum paip, V) geometrically generaliz&sl, zp)
usually considered in particle physics. Of course, thre latter makes sense BAVIfG)
is supposed to be the trivial princip@tbundleM x G— M. In general, there exist gauge
inequivalent vacuum pairs (also in the case wh#1, G) is supposed to be trivial). We
will show that, if spacetime is simply connected, then all vacuum pairs are gauge equivalent
to the canonical one.

Since the ground states of the Higgs boson are treated as a globally defined objects (sec-
tions) the physical decomposition of the Higgs boson into the Goldstone and the physical
Higgs boson is geometrically reflected b ggrading of the reduced Higgs bundle. Like-
wise, with respect to a vacuum pair, the reduced adjoint bundle, which geometrically repre-
sents a gauge boson, splits into two real vector bundles. These represent the residual gauge
boson and a massive vector boson. In fact, the rank of the vector bundle representing the mas-
sive gauge boson equals the rank of the “Goldstone bundle”. This gives rise to a geometrical
description of the known Higgs—Kibble mechanism (i.e. to the so-called “Higgs Dinner”).

The description of the mechanism of spontaneous symmetry breaking in terms of an
H-reduction of a given principali-bundle is well known and can be found, for instance,
in [1,2] or [9]. We also refer td10] and the corresponding references therein like, e.g.
[7]. For a good exposition of the fiber bundle description of gauge theories that is between
“mathematics and physics”, we refer[tl].
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Though clear from a mathematical point of view, the geometrical description of the ground
states of the Higgs boson in terms of vacuum sections seem to be less known. The notion
of vacuum section is physically intuitive and permits to treat the bosonic mass matrices as
sections as well. We show that the mass matrices can be regarded as “normal vector fields” of
specific sub-manifolds and thus are related to the extrinsic curvature of these sub-manifolds.
The bundles representing the physical Higgs boson and the massive gauge boson can be
decomposed into the eigenbundles of the (non-trivial part of the) respective bosonic mass
matrices. This expresses the notion of “particle multiplets” in purely geometrical terms
without reference to any gauge. In particular, the proposed setup allows to geometrically
describe “free particles” within gauge theories. The notion of vacuum pairs also gives
rise to a geometrical understanding of the unitary gauge. For a specific class of Higgs
potentials, we present a necessary and sufficient condition for this gauge to exist. This
class of potentials includes the Higgs potential postulated in particle physics. As a specific
example, we discuss the unitary gauge in the case of the electroweak sector of the Standard
Model from the geometrical point of view presented here.

The aim of the paper is to emphasize the geometry which underlies spontaneously broken
gauge theories. In particular, we want to stress how the notion of mass might be related to
the topology of spacetime if the mechanism of spontaneous symmetry breaking is treated
from a global point of view. The motivation for the present work might be best summarized
by quoting a famous statement by H. Weyl:

“Every physical guantity will be represented by a geometrical object

One may ask for the geometrical objects representing “free particles” and their corre-
sponding “masses” within the geometrical frame of (spontaneously broken) gauge theories.
To geometrically consider “particles” as (gauge equivalent) vector bundles and states as sec-
tions mainly results from the well-known circumstance that a general gauge group seems
to have no physical realization. In particular, a (local) trivialization of a general principal
G-bundleP(M, G) has no physical counterpari.ikewise, a specific gauge condition
cannot be physically realized, in general. Therefore, any reference to some gauge (or lo-
cal trivialization) should be avoided in a geometrical description of “particles” and their
properties like “mass” and “charge”. For this reason, it seems inadequate to geometrically
identify particles with sections and “free particles” with “components” of the typical fiber
with respect to some (local) trivialization. SinB€M, G) has no direct physical meaning,
its definite topological structure can only be determined by additional physical arguments.
For instance, if there were no (massless) gauge boson in naturé?thénG) would have
to be trivial. Or, as we will show, if spacetime is supposed to be simply connected, then
vacuum pairs exist if and only (M, G) is trivial. To put emphasis on a possible relation
between the topology aM andP(M, G) on the basis of spontaneously broken gauge
theories is a matter of concern of this paper.

The paper is organized as follows. Section 2 we introduce the notion of vacuum
pairs and discuss the bosonic mass matrices as sectioSection 3 we consider the

1 This is quite different from the case of the theory of general relativity. Not only does the frame bundle
of spacetime have a physical meaning but in relativity there also exist physical quantities like, e.g. energy and
momentum that can be defined only with respect to some reference frame (local trivialization of the frame bundle).
This should not be confounded with the assumption that any physical statement should be frame-independent.
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Higgs—Kibble mechanism from a geometrical perspective and discuss the unitary gauge, as
well as the notion of “free particles” within the context of gauge theoriesSdntion 4

we geometrically interpret the bosonic mass matrices as “normal sections” of specific
sub-manifolds defined by a vacuum. Finally, ®ction 5 we discuss the existence of

the unitary gauge in the case of the structure group of the electroweak sector of the Stan-
dard Model from the geometrical viewpoint presented in this paper. We finish with a brief
summary and outlook.

2. Vacuum pairs and the bosonic mass matrices

The aim of this section is to geometrically formulate the physical notion of a “vacuum”
within the framework of gauge theories. In doing so, the basic notion we have to introduce
is that of an “orbit bundle”. To start with, we denote ¥1, gm) a smooth orientable
(pseudo)Riemannian manifold. Topologically is supposed to be a Hausdorff space
that is paracompact and (pathwise) connected. Since in this paper a (pseudapétric
assumed to be fixed we simply referAd as “spacetime”.

A Yang-Mills—Higgs gauge theotig specified by the datéP(M, G), pn, V1). Here,
P(M, G) denotes a principzﬂ:-bundlePl’iM, where the structure groupis assumed to
be a compact, real and semi-simple Lie group with Lie algebrad)ie(he corresponding
Killing form is denoted byg. The unitary (orthogonal) representatjan: G — Aut(KV)

(K = C, R) is assumed to be faithful. The smooth real valued functigre C° (K", R)

is supposed to be bounded from below and taGbevariant. Moreover, transversally to
each orbit of minima o¥/y the Hessian of this function is positive definite. In this cige
is called ageneral Higgs potential

Animmediate consequence of the above given datais the existence of a specific Hermitian
vector bundley:

JTHZEHZPXpHKN—>M. 1)

We call this bundle théliggs bundlelt is considered to be the geometrical analog of the
Higgs boson. Accordingly, states of the Higgs boson are identified with seatiens(&y).

Because of it$G-invariance a general Higgs potential induces a smooth mapping (also
denoted byp):

Va: I'Ey) — C° (M, R), D " VH. (2)

Here,¢ € C;?eq(P, KN) ~ I'(&q) is the py-equivariant mapping, which corresponds to the
state® of the Higgs boson, i.ed(x) = [(p, ¢(p))]|pen;1(x). Then,¢*Vy is defined by

¢*VH(x) := Wy (¢(p))|p€ﬂ;1(x). The corresponding action functional is denoted: by

Wi IH) — R, P > (¢*Vh, 1). ®3)

2 Of course, this functional is only well defined if the states satisfy suitable boundary conditiond {er
supposed to be compact).
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Here, (-, -) denotes the usual pairing GB(M, E) := I'Earm) © &), Whereé 4+ ayy is
the Grassmann bundle agdny Hermitian vector bundle ove¥t with total spaceE. We
call the action(3) theglobal Higgs potential
Let A(én) be the affine set of all associated connections on the Higgs bundle. The
Yang-Mills—Higgs actionbased on the dai®P(M, G), pH, VH), then reads

IywH - AEn) x I'ép) — R,
(A, @) = s(Fa, Fa) + (0o, 0ADP) + sVH(P) = Zym(A) + ZH(A, P). 4)

Here,s = +1 depends on the signaturegd and Fa € I'(§ y2(7+ 1) ® &ad(p)) is the field
strength with respect to the connectidnanday, is the corresponding covariant derivative
on I'(én). By &34p) we mean thedjoint bundle

Tad: ad(P) := P xg Lie(G) - M. (5)

Thegauge groupf P(M, G) is denoted by. As usual we identify; with /‘;‘fj_eq(P, G) >~
Auteq(P ). Here, the latter denotes the subgroup of right equivariant automorphisis on
which induce the identity oM.

Besides the Higgs bundle and the Yang-Mills—Higgs action, there is still another geo-
metrical object that is naturally associated with the data specifying a Yang-Mills—Higgs
gauge theory. For this, lely € KV be a minimum ofV4. We denote by, respectively,
orbit(zg) ¢ K andI(zo) C G the orbit associated witky and the isotropy group of the
minimum. Up to conjugation, there is a unique closed subgiup G suchthatd ~ I1(zg)
and orbitzg) >~ G/H. Thus, up to equivalence (within the category of bundles) a minimum
zo is associated with a specific sub-bunéigitz,) C &n of the Higgs bundle:

Torp: Orbit(zg) := P X, Orbit(zg) — M. (6)

Here, porb := pHlorbitzg)- We call this fiber bundle therbit bundlewith respect to the
minimumzo. Notice that section® € I'(éomit(zy)) Of the orbit bundle can also be considered
as sections of the Higgs bundle and thus as specific states of the Higgs boson. Since these
states minimize the global Higgs potent{d) we call themvacuum sections

As a closed subgroup of the structure gra@iythe groupH also acts orP from the right
and therefore makeB— Orbit(zg) a principalH-bundle. As a consequence, every vacuum
section corresponds to difzp)-reduction ofP(M, G). This means thal’ € I'(¢orbit(zg))
determines (up to equivalence) a unique princifabundle Q(M, H) together with an

embedding®—> P, such that the following diagram commutes:

4 P
To| T K
Torb .
M=—2_0rbit(zy)

We call(Q, ¢) avacuunwith respect to a minimurgy. Notice that a vacuum also determines

avacuum section by putting(x) := [(t(g), Zo)] |q€nél(x) for all x € M. Therefore, there is
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a one-to-one correspondence between the ground states of the Higgs boson and the vacua
(for instance, cf. Chapter 1.5, Proposition 5.6[@}). We call the reduced gauge group
H =~ Auteq(Q) theinvariance group of the vacuur©, 1). A Yang-Mills—Higgs gauge
theory is calledspontaneously brokewith respect to a vacuurt@, ¢) if the invariance
group of the latter is a proper subgroup of the original gauge géolihe gauge symmetry
is called maximally broken by the vacuum if its invariance group is trivial. Note that in this
caseP(M, G) must necessarily be trivial. However, tfereduction of a trivial principal
G-bundle can be nontrivial. In general, we call a vacud® ¢) trivial iff Q(M, H) is
equivalent to the trivial principat/-bundle M x HE%M. Notice that there is a distinction
between a trivial vacuum and the case where the gauge symmetry is completely broken, i.e.
H = {e}.

ThoughQ(M, H)is notequivalentto the original princip@l-bundle, every;-associated
fiber bundle is equivalent to it8 -reduction. More precisely: I : E := P x, WX Mbe

aG-associated fiber bundle with typical fib&rand representaticai—p> Diff (W). Moreover,
let &£ red be the corresponding reduced fiber bundle with respect to a vac@um, i.e.
Ered . Ered ' = Q Xpoq W — M. Here,pred := plH. Then, we havér >~ &g red. The
corresponding bundle isomorphism (over the identityvdhis given by the diffeomorphism:

Ered — E, [(g, W)] = [(t(g), W)]. (7)

This will be crucial in what follows. For instance, every vacuum section corresponds to
a constant section (also denotedWyin the reduced Higgs bundkg eq defined by the
appropriate vacuurt@, ¢):

V: M — EH red, x = [(g, ZO)]Iqenél(X)' ®

This geometrically generalizes the following situation usually encountered in physics. Let
P(M, G) be the trivial principalG-bundle M x Ggl/\/l. In this case, the orbit bundle
with respect to a minimurgy has a canonical section given by the constant mapping (also
denoted byzg):

Zo: M — M x orbit(zg), x = (x, 20). 9)
In this case, the corresponding vacuum is simply given by the inclusion:
1t Mx H—> Mx G, (x, h) = (x, h). (10)

Clearly, (8) generalizeg9) to geometrical situations where no specific assumption on
P(M, G) has been made. As we have already mentioned, even in the caseRihdres)
is trivial there might exist nontrivial vacua that cannot be gauge equivalent to the canon-
ical vacuum(10). Therefore, it seems appropriate to deal with the more general situation
described by(8).

A vacuum sectior{8) defines a constant section of the reduced Higgs bundle. It is also
covariantly constant with respect to any connectior A(én req). The latter denotes the
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affine set of associated connections on the reduced Higgs bundle. Thus, with respect to a
vacuum(Q, ¢) there exists a distinguished affine subset of connectioria@d, G).2

Definition 2.1. A connectionA on P(M, G) is called to be “compatible” with a vacuum
sectionV if it also defines a connection a®(M, H).

Notice that a connectiod on P(M, G) is compatible with)), iff its connection form
w € 21(P, Lie(G)) satisfies*w € 21(Q, Lie(H)).

Definition 2.2. A Yang-Mills—Higgs pair(A, @) € A(&n) x I(&n) is called a “vacuum
pair” provided® = V is a vacuum section andl = Z is induced by a flat connection on
P(M, G), which is compatible with. The corresponding covariant derivative B§) is
denoted by.

A vacuum(Q, ¢) defines a minimum of the energy of the Higgs boson. In fact, let us
denote by! the horizontal projector of a reducible connectibon P(M, G). Itinduces
a corresponding horizontal projector (and thus a connection) on the reduced orbit bundle

by
Bl (W WD = [} W), 0)]. a

Here,(u,w) € 7,0 ® T,0rbit(zg).* Correspondingly, the appropriate vertical projection
reads

Dllg.27 LU WD = [0, W + py((Fw)g(U))2)], (12)

wherew € 21(P, Lie(G)) is the connection form oft andp’'y = dpn(e) is the “derived
representation” of the Lie algebra 6f

Consequently, along i) c Orbit(zg), we obtain the following identity for a connection
onP(M, G) compatible with the vacuurQ, ¢):

Pllg.z0) LU, W)
= [0, wW)] = [(u, W)] — WV(Ton([(g. 20)])) (Amarn([(7. D[ U W]).  (13)

In other words, when restricted to the vacuungitnany associated reducible connectibn
looks like the canonical flat connection that is defined By &mrqrp). In particular, formula
(13)implies that for any connectioA on P(M, G) compatible with the vacuum sectidh
one obtains

ainredy = gV o dy = 0. (14)

3 Note that every connection on the reduced principadundleQ(M, H) induces a connection on the principal
G-bundleP(M, G). But not vice versa, in general. If the latter happens to hold true, the connection is said to
be reducible. Clearly, the set of reducible connectionsPaM, G) is in one-to-one correspondence with the
connections o (M, H).

4 Notice that(u’, w') ~ (u,w) if and only if there existss ¢ H andn e Lie(H), such thatfghQ > U’ =
dR; (q) (U — d/di(q exp(rad, (n)))]i=0) andT,,, ;,-1,,0rbit(zo) > W = p(h =) (W + p;(@d: (n))2).
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In contrast, a vacuum paii&, V) geometrically represents a minimum of the energy of

a Yang-Mills—Higgs gauge theory. It thus generalizes the canonical vacuunidpai,
usually referred to in particle physics. The following shows in what sense the canonical
vacuum pair is unique (up to gauge equivalence). In fact, the existence of vacuum pairs
relates the topology of spacetimé to that of P(M, G).

Proposition 2.1. Let again(P(M, G), pn, V1) be the data defining a Yang-Mills—Higgs
gauge theory. Alsdet zg be some minimum of a general Higgs potentgl If spacetime
is simply connectedhen there existéup to gauge equivalengat most one vacuum pair
in A(&q) x I'(E4) with respect to the chosen minimum

Proof. Let 1 (M) = 0. Then,P(M, G) possesses a flat connection iff the principal

G-bundle is equivalent taA x G%M. Moreover, the flat connection is equivalent to the
canonical connection on the trivial princip@tbundle (cf. Chapter 9.2, Proposition 9.2 in

[6]). Thus, up to equivalence we may assume @, G) is trivial. Of course, the same

holds true for any vacuum that possesses a flat connection. Since the embedding is right
equivariant we obtain

MXH'——L—'——PMXG
M

wherec(x, h) = (x, y(x)h) andy € C®°(M, G). Consequently, if there exists a vacuum
pair (9, V) it must be gauge equivalent td, zp). O

Notice that nontrivial vacua may exist even if spacetime is simply connected. The notion
of vacuum pairs is clearly more restrictive than that of vacua.

So far we have discussed a minimum of the energy of a Yang-Mills—Higgs gauge theory
from the perspective of Yang-Mills—Higgs pairs. Next we will show how the notion of a
vacuum pair can be used to “globalize” thesonic mass matriceBor this letK = R. In
the case wher& = C, we regard the Higgs bundle as a real vector bundle of ravk 2
Accordingly, in what follows the general Higgs potential is considered as a real function and
pH denotes an orthogonal representatioiafthe real form of a unitary representation).

Definition 2.3. Let (Q, ) be a vacuum with respect to a minimugn € RY of a general
Higgs potentialVy. The global mass matrix of the Higgs bos@nthe sectionV*Mﬁ €
I'(éendEy)) defined by the equivariant mapping:

VMG D P — EndRY),  p=u@)g > pr(g HMAZ0)pH (). (15)

Here, M (zo) € End(RY) is given byM?(z0)z - Z := HesgVi)(20)(z,Z) forall 2,7 €
RN. The equivariant mapping Chreq( P, Orbit(zp)) corresponds to the vacuum section of

(Q,0),i.e.v(P) = pu(gHzoforall p = i(g)g € P.

Notice that with respect to a vacuum pé¥, V), we may identify the affine set of all
(principal) connections o?(M, G) with &x4 p). The latter can in turn be identified with
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the bundle&yw:
aym : Eym = O xpy Lie(G) —> M. (16)

We call the bundlery; ® &ym the Yang-Mills bundleand interpret it as the geometrical
analog of a “real” gauge bosén.

Definition 2.4. The global mass matrix of the gauge bosinthe sectionV*M2,,
I'(éendadp))) defined by the equivariant mapping:

V"M o P — Endlie(G)),  p=1(q) — ad,1 o My (20) o ad,. 17

Here,M?,, (z0) € End(Lie(G)) is defined byB(MZ2,, (zo)n, 1) = 20},(n)20 - pi4(n')2o for
all n, ’ € Lie(G). The ad-invariant bilinear form denotes the most general Killing form
on Lie(G) parameterized by the “Yang-Mills coupling constants”.

Though defined with respect to a vacuum pair the spectrum of the bosonic mass matrices
is constant throughoutt and only depends on the orbit of the minimugn Moreover,
both section®’* M3, V* M?2,, commute with the invariance group of the vacuum pair. This
proves the following lemma.

Lemma 2.1. Let (&, V) be a vacuum pair of a spontaneously broken Yang-Mills—Higgs
gauge theory. The Higgs boson and the gauge boson represeespectivelyby &n red
and by&yy decompose intbbosons of mass’m

§H,red = @ Sl (18)
mfespe¢M?) "
b= ®  Eymmg, (19)

mdy, especMdy,)

; i 2 2
Here sH_,m,Z_' andsYM’mgM denote the appropriate eigenbundle6fM5 and ofV* Mg,
respectively

Notice that this decomposition explicitly refers to a vacuum pair. However, the rank of
EHm2> EYM 2, only depends on the orbit @f and is thus independent of the vacuum pair
chosen.

In the next section, we will discuss another decomposition of the Higgs bundle geomet-
rically representing the splitting of the Higgs boson into the “Goldstone boson” and the
“physical Higgs boson”. The rank of the corresponding vector bundles equals the rank of
V*M\Z(M and ofV*M,?,. This permits a geometrical interpretation of the so-called “Higgs
Dinner”. We discuss its dependence on vacuum pairs and how the latter are related to the
“unitary gauge”.

5 7y, denotes the cotangent bundle. Sometimes we will omit the spin degrees of freedom and refer to the “internal
bundle”&yy as the gauge boson. In contrast to a real gauge boson, a connecRPoNOIG) is interpreted as the
geometrical analog of a “virtual” gauge boson.
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3. The“HiggsDinner”

In this section, we discuss the Higgs—Kibble mechanism (“Higgs Dinner”) from a geo-
metrical perspective. For this, we first translate Goldstone’s theorem into geometrical terms
and then show how the Higgs Dinner is related to the notion of vacuum pairs. In particular,
we want to stress that the existence of the so-called “unitary gauge” is not necessary for the
existence of the Higgs Dinner, cf. Chapter 10.31h

Letzg € KV be a minimum of a general Higgs potential. In what follows, we will
mainly be interested in the real cdSe= R. Thus, ifK = C we will consider the real form
of the unitary representatigny and take the Higgs bundég as a real vector bundle of rank
2N. Likewise, we will regard the Higgs potential as a real function. Let agfaia 1(zp) be
the isotropy group of the chosen minimume RY and Lig /)1 c Lie(G) the orthogonal
complement of Li¢H) with respect to the Killing formkg on G. We then consider the
following two subspaces d&":

We = {ze RN|z= Tz, T € pj;(Lie(H)) C saN)}, (20)
WH,phys = Wé_ (21)
SinceH C G is a closed subgroup, it follows that both tBeldstone spac®&c and the

physical Higgs spacéVy phys are H-invariant subspaces &". As a consequence, one
may associate with a vacuu(@, ) the two real vector bundless, £ phys defined by

G Egi= 0 Xpg Wo = M, (22)
7TH,phys - EH,phys = QO X pH,phys WH,phys = M. (23)

Here, respectivelyyg := pHlwg, PH,phys = PHI Wi phys denotes the restrictions pf; to the
Goldstone and the physical Higgs spé2@) and (21)with respect to the subgroug. For
instance pg(h) = pH(h)|wg for all h € H. We have thus proved the following lemma.

Lemma 3.1. Let (P(M, G), pH, V1) be the data of a Yang-Mills—Higgs gauge theory.
Also let(Q, ) be a vacuum with respect to some minimzge KV of Viy. Provided that

N + dim(H) — dim(G) > 0 the reduced Higgs bundig req (considered as a real vector
bundlg is Z,-graded

&H,red = &G @ &H,phys (24)

wherg respectively&g and &y phys denote the Goldstone and the physical Higgs bundle
with respect to the chosen vacuum

Note that
rk(&H.phys) = dim(im(V*M3)), (25)
rk(&g) = dim(ker(V*M3)). (26)

Correspondingly, the rank of the Goldstone and the physical Higgs bundle only depends on
the orbit ofzg and not of the chosen vacuum@, 1).
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The geometrical meaning of the Goldstone bundle is as follows? letI'(£4) be the
vacuum section that correspondg &, «). Then, we have the isomorphism ¢ M):

Eglx = VW) Orbit(zo). 27)

Here,Vy( Orbit(zg) denotes the vertical subspace of the tangent spaggOrbit(zo) along
the vacuum sectiol. Thus, the Goldstone bundle can be identified with the vertical bundle
of the orbit bundle along the chosen vacuum section.

The equality(26) can be considered as a geometrical varia@aitistone’s Theoreief.
[4]); there is a massless spin-zero boson if the gauge symmetry is spontaneously broken.
However, by interacting with the gauge boson the Goldstone boson physically manifests
itself as the “longitudinal component” of certain massive spin-one bosons. This is known
to be the Higgs—Kibble mechanism (§5]). In fact, we obtain

rk(€c) = dim(im(V*M2y,)) (28)

and the massive vector bosons which the Higgs Dinner refers to, are geometrically rep-
resented by the eigenbundig®) of V*MZ,,. Notice that if P(M, G) is supposed to be
nontrivial there must be at least one (massless) gauge boson.

Usually, the Higgs Dinner assumes the existence of a specific gauge, callauitdrg
gauge It is assumed that an equivariant mapping Cj’;a_eq(P, G) exists for everyd ¢

I'(Ey), such tha'y(P)‘1¢(P) is orthogonal to the Goldstone spaée for all p € P. Here,

¢ e Cf)?eq(P, K¥) is the equivariant mapping which corresponds to the seatidfor this
reason, the Goldstone boson is sometimes considered as being “spurious” for it can be
“gauged away”. Of course, this is misleading because of the manifestation of the Goldstone
boson as longitudinal components of massive vector bo@)sin what follows, we give

a geometrical description of both the Higgs Dinner and the unitary gauge and show how
they are related to the vacuum chosen.

Definition 3.1. Let(Q, ) be a vacuum with respect to some minimegand letd € I'(&y)
be a state of the Higgs boson. We define the Higgs boson to be in the “unitary gauge” with

respect to the chosen vacuumuiftd e I'(éy phys). Here, *@(x) = [(q, [*¢(q))]|q€nél(x)

andg € Cpleq(P, K) is the corresponding equivariant mappingfof
Of course, one can always obtain such simply by projecting out the Goldstone part of

@. However, this raises the question why this can always be done without loss of generality?

A sufficient condition is given by the following proposition.

Proposition 3.1. Let (Q, ¢) be a vacuum with respect to some minimzgrof a general
Higgs potentialvy. Let @ € I'(§4) be a state of the Higgs bosdagain considered as a
real vector bundle If the mapping
Lie(G) — R
Fy: P — Lie(G)", p— { (29)
n = py(Mzo - ¢(P)

is of rankdim(G) — dim(H) and qul(O) C 1(Q) C P,thend isin the unitary gauge with
respect to the vacuui®, ¢).
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Proof. Thelocal partofthe proofisthe same as givefiirChapter 10.3, Theorem 10.3.10]
The idea goes back to Weinbdfp]. SinceG is assumed to be compact the mapping:

O4: P> R, p20-¢(P) (30)

has a critical poinpg € 7, (x) for eachx € M, andF, *(0) C P is the critical set 0B.
Note thai® is H-invariant and thus descends to a well-defined mapping on the orbit bundle.

The rank condition of the proposition then guaranteesﬁg&(O) is a smooth sub-manifold

of dimension diniM) +dim(H), which is transversal to each fibe)‘;l(x) C P.Therefore,
by the implicit function theorem there exists a family of local trivializatigbhs,, o)aec 4
of P(M, G) (A some index set), such that {m,) C Fdjl(O). As a consequence of the

assumptiorF(;l(O) C 1(Q), the mappingM > x i [(04(x))] € Orbit(zp) is well defined
and coincides with the vacuum section that correspond®4te). Let ((g) = o,(x) and
we = [(q, TZg)] = (x, Wg) € Eg be arbitrary. We may writ®(x) = [(04(x), ¢(oy(x)))]
and thus{wg, t*®@(x)) = Tzg - t*¢(g) = 0. Therefore*® is orthogonal to the Goldstone
bundle defined with respect to the vacuu@ ¢). O

We call the setF(;l(O) C P, defined by the mappin(29), the critical set associated
with a state® € (&) of the Higgs boson. If this critical set defines a sub-manifold of
dimension dingM) + dim(H), then it also defines a vacuum sectiBp € I'(Eorbit(zy))-
Clearly, with respect to the corresponding vacu(@y, () the stated is in the unitary
gauge. There exists a gauge transformatfor Auteq(P) such thatf*® is in the uni-
tary gauge with respect to the original vacuy@®, () iff the latter is gauge equivalent to
(Q4. tp). Note that a necessary condition for the existence of a vacuum, with respect to
which a state® of the Higgs boson is in the unitary gauge, is tdatloes not vanish.
Before discussing a specific class of Higgs potentials, suchithat/ (&) \{O}, with O
being the zero section, is also a sufficient condition for the existence of an appropriate vac-
uum, we give a simple example clarifying the geometrical idea which underlies the unitary
gauge.

For this letG = U(1) andP(M, G) be equivalent to the trivial principd/(1)-bundle
M x U(l)E%M (according to the corresponding remark in the last section this holds
true, in particular, if all “gauge bosons” are supposed to be massive)lV l-etl and the
representatiopy be the defining one ofi. Also let us assume that (z) := (1 — |z|%)2.
In this case, there is only one orbit of minima which can be identified with the one-sphere
$1 ¢ R2. Note that one has to select one minimugne C in order to identifyU(1) with
S (here,H = {1}). We also may identifyl(¢4) with C>°(M, C) and, correspondingly,
I&orbit(zg)) With C*° (M, s1). Up to equivalence the critical set of a state C*°(M, C)
of the Higgs boson reads

F,H0) = {(x,8) e M x UD)[Tz- g 1p(x) =0} C P. (31)

Here,T € so(2) is the real form of the generator &f(1). In the case at hand the fiber
derivative of the mappin{29) can be identified with the (pointwise) bilinear form:

FFy:PxRZSR, (p=(xg. (1)~ —2120- g o). (32)
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Therefore, ifp € C*(M, C\{0}), then the critical set ap defines a smooth sub-manifold
of P of dimension diniM) (sinceH is trivial). In this case, one can define a gauge trans-
formation by the mappirfy

y: M — U, X g, (33)

whereg € prIl(x) N Fw‘l(O). Indeed, in the particular case at hand the critical set of a
nonvanishing state can be considered as the graph of the unitary gauge transfof@3ation
The corresponding vacuum sectigpis given byV, (x) := (x, y(x)zo) which obviously is
gauge equivalent to the canonical one. Finally, the vacu@p «,) may be identified with

the embedding

M — MxUQ), x = (x, y(x)) (34)

which can be considered as an element of the gauge group (unitary gauge transformation).
This particularly exhibits the relation between the unitary gauge of a state and the vacuum,
geometrically considered as a section in the Higgs bundle.

Of course, the example discussed above is very special in several respects and can also
be discussed more straightforwardly. The reason for discussing the above example in some
detail is to demonstrate certain geometrical features that can be generalized to less trivial
examples. This is what we want to discuss next.

Concerning the existence of the unitary gauge, the basic feature of the above example is
that the orbit of any minimum is homeomorphic to a sphere of codimension one. Note that
any vacuum section is in the unitary gauge with respect to itself. Thus, a vacuum section
generates the physical Higgs bundle, provided the latter is of rank one. Moreover, it is
straightforward to see that in the unitary gauge with respect to the vac@ym,) the
given sectiond reads { € M)

D (x) = | LX)V (). (35)

Note thau;;cb(x) = (x, |p(x)| z0) € En,physlx. The basic features of the above example can
easily be generalized.

Definition 3.2. We call a general Higgs potentig} “rotationally symmetric” if there exists

a smooth real valued functiofy € C°(R.) such that/yy = fior. Here KN SR, , 7+
|z| denotes the “radius function”.

Clearly, most of the examples studied in physics are covered by this class of Higgs poten-
tials. This holds true especially for the (minimal) Standard Model. We have the following
proposition.

Proposition 3.2. Let (P(M, G), pH, V4) be the data defining a Yang-Mills—Higgs gauge
theory, where the Higgs potential is assumed to be rotationally symmetric. For every non-
vanishing state® € I'(én) of the Higgs boson there exists a vacuum with respect to which
the state is in the unitary gauge

6 Actually, this is a general feature if the symmetry breaking were supposed to be complete.
7 Note that we have put all physical constants, parameterizing the Higgs potential, equal to 1.
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Proof. SinceVy is assumed to be rotationally symmetric the orbit of a mininagnecan
be identified with a spher6¥=1(rg) c R of radiusrg := r(z9). Consequently, we
have rk&n phys) = 1. This holds true for any vacuug®, «). In particular, with respect to
@ e I'(¢1)\{O} we may define a vacuuQy, 1) by

|20
@)

Vyp: M — Orbit(zo), X D(x). (36)
Then, it follows from what we discussed before thais in the unitary gauge with respect
to the vacuum(Qg, t¢). O

Note that even ifP(M, G) is trivial the above statement does not necessarily imply the
existence of a unitary gauge transformation analogo(33p

Letagain(P(M, G), pH, V1) be the data defining a Yang-Mills—Higgs gauge theory and
(&, V) a vacuum pair that spontaneously breaks the gauge symmetry. With respect to the
original gauge grou = I'(éad(p)), we have the gauge boson geometrically represented
by the Hermitian vector bundl€; ® £a4p) and the Higgs boson k. With respect to
the invariance groupl = I'(éad(g)) of the vacuum(Q, ) we have, respectively, the gauge
boson together with the Goldstone and the physical Higgs boson geometrically represented
by the Hermitian vector bundlg) ® £ym, £ andén phys In addition we consider the vector
bundle

O xy Lie(H)* - M. (37)

This decomposes into the Whitney sum of eigenbundI®s 812, like &4 physdecomposes
into the eigenbundles 0f* M3 of nonvanishing masses. Sindg ~ Lie(H)* the physical
Higgs Dinner is geometrically described by the identity

&ad0) D (6G D &H,phyd = (Sad0) D &c) D &H,phys (38)

Notice thatagy o) @ &g, as a vector bundle, is naturally isomorphic to the Yang-Mills bundle
(16)and thus equivalent tgq p). Consequently, the Higgs Dinner does not refer to a gauge
condition. However, it always refers to a vacuum.

In the last section, we have defined the bosonic mass matrices and called their eigenval-
ues the “masses” of the bosons which are geometrically represented by the correspond-
ing eigenbundles of the mass matrices. This physical interpretation of the eigenvalues
usually refers to the field equation of “free bosons”. To also justify this physical in-
terpretation of the eigenvalues within our geometrical description we give the following
definition.

Definition 3.3. Let 0 < ¢t < 1. A family of Yang-Mills—Higgs pairg4;, &;) € A(&H) x
I'(&p) is called a“fluctuation” of a vacuum pdif, V) provided there i®y phys € T(EH, phys)
andA = Ay @ Ag € 2'(M, Lie(H) @ Lie(H)*) such that

84, = 3+ tAn + 1p(Ac) = 8122 + 15 (Aa), (39)

D, =V+ l(pH’phys. (40)
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Next, we note that the mass matridesM3, V*M3,, split according to the decomposi-
tion of & red, Eym. That is, we have
V*MI?! = M(25 & Mlgi,phys’ (41)
V*MEy, = M M3 42
= Myyn & Myw 6, (42)
where dimim(M{ . ) = dim(im(V* M3)) and dimim(MZy, ¢)) = dimim(V*M3y,))

= dim(im(M3)).

Proposition 3.3. Let(&,V) € A(én) x I'(éy) be a vacuum pair that spontaneously breaks
the gauge symmetry of a Yang-Mills—Higgs gauge theory, BsM;, ®;) be a fluctuation

of the vacuum. Therup to order O(t2) the Euler-Lagrange equations in terms of the
fluctuation read

§200) 2d0) 4 | — 0, (43)
SEGBEGAG + M$M’GAG =0, (44)
SEH,physaEH’phys¢H’phys+ Mlgi,phys¢vahy5 = O (45)

Here, 9349 3Fe_ EH denote the induced flat covariant derivativestaf o), &G, &H.phys
respectively, and®¥Q) sEc_ §EH are the appropriate co-derivatives

Proof. The proof results from the usual variational calculation where one takes advantage
of the orthogonality of the Goldstone and the Higgs bundle and of the fact that the vacuum
section is covariantly constant. O

Notice that the fluctuatiom is not compatible with the vacuum. Indeed, it is the de-
viation of (39) from being compatible with the vacuum that gives rise to the nontriviality
of V*M%,,. Since the mass matrices commute with the connection, one may use an or-
thonormal eigenbasis of the bosonic mass matrices whereby thedjeldions (43)—(45)
read

80AH, (k) =0, (46)

89AG,a) + miw 6 A0 =0, (47)
2

80PH,phys (j) + M phys jPH.phys () = 0 (48)

wherek =1, ..., dim(H),l =1, ...,dim(Wg) andj =1, ..., dim(Wy phys).

The fact that the connectiof is flat does not mean that the principal symbols of the
respective second order differential operatorg46)—(48)coincide with their symbols.
The symbol, however, is the geometrical object that corresponds to the physical quantity
of momenta (squared) of the appropriate particleMfis simply connected the principal
symbol coincides with the symbol and in this case we recover the usual field equations
of “free bosons”. In the slightly more general case we call solutions of thedigldtions
(46)—(48)quasi-free statesThe corresponding line bundles generated by the eigenbasis of
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the bosonic mass matrices are interpreteasysnptotiqquas)-free bosonsOf course, the
scale on which this interpretation holds is given by the parameXitice that the difference
between asymptotic quasi-free and asymptotic free bosons only results from the topology of
spacetime. In contrast, the difference between asymptotic free and free bosons results from
their “H-charge”. For instance, consider the electroweak sector of the Standard Model (see
the next section). In this case, the reduced gauge group equals the electromagnetic gauge
group. However, the physical Higgs boson turns out to be electrically uncharged and is thus
not only insensitive to an Ahoronov-Bohm like effect but can be geometrically represented
by atrivial Hermitian line bundle. This holds true even in the case where the underlying
electromagnetic vacuui®, ¢) is nontrivial.

In the next section, we give a geometrical interpretation of the bosonic mass matrices as
“normal sections” of specific sub-manifolds.

4, Bosonic mass matrices and “normal bundles’

Let (Q, v) be again a vacuum andle I'(éomitzy)) be the corresponding vacuum section.
We have already mentioned that the Goldstone bufiglle & req might be identified with
the vertical bundle 0Orbit(zp) along the vacuum section Likewise, one may consider
the physical Higgs bundlg phys C &H,red @s the “normal bundle” o©rbit(zg) C En red
along the vacuum sectioi For this, we consider the (reduced) Higgs bundle as a vector
bundle over the (reduced) orbit bundle, i.e.

pry: mwyEH — Orbit(zo). (49)
Along a vacuum sectiol one has

wherer*

oibEG = VOrbit(zo)lim(y) and the tangent bundle 6¥rbit(zo) splits into

TOrbit(zo) limv) = imdV) & 75, Ec. (51)

Thus, 7, En phys Can be considered as the “normal bundle” of the reduced orbit bun-
dle. This permits to recover the well-known geometrical picture of the Goldstone boson
as being parallel and the physical Higgs boson as being orthogonal to the orbit (bundle).
The geometrical picture also illuminates why the spectrum of the global mass matrix of
the Higgs boson is constant, for it can be regarded as the parallel transp’dﬁ(zis)
along the specified vacuum. The Hessian of a general Higgs potential is constant along
the orbit and positive definite transversally. Thus, it does not come as a surprise that the
(global) mass matrix of the Higgs boson is related to the extrinsic curvature of the or-
bit (bundle). This is most easily exhibited in the case of a rotationally symmetric Higgs
potential.

For this, letVi(z) = fu(r(2)) = fu(r) be rotationally symmetricz(e RV). Let (Q, 1)
be again a vacuum that spontaneously breaks the gauge symmetry defiRedhys).
Also letV be the appropriate vacuum section on the reduced Higgs bundle. In the case of
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a rotationally symmetric Higgs potential, the nontrivial part of the (global) mass matrix of
the Higgs boson reads

Mﬁ,phys(x) = fli(ro)e(x)* ® e(x), (52)

where [V(x)|le(x) = V(x) € EHphysx: e(x)* € Eﬁ,physx the dual vector, andg =

r(zo) = ||V(x)|l. The spectrum is given by spew,ﬁ,phys) = { f{1(ro)} and the mass matrix
is related to an appropriate generalization oftbeond fundamental foraf orbit(zg) ¢ RV
due to the formula

Egx X Ecx — R,  (U,W) > g x(MZ(Bue)(x), W) = fi(ro)ge..(u,w). (53)

Here,gc denotes the Hermitian product @i, anda is understood as the covariant deriva-
tive on the pull-back bundle £n req With respect to the flat connectiorf,, =. The for-
mula (53) generalizes the situation wheREM, G) is supposed to be the trivial principal

G-bundleM x Gm/\/l. In this case, the above formula reduces to

We x W — R, (u,w) — M3(zo)de(zo)u - W = f}j(ro)u - W (54)
which can be regarded as the fiber Hessian of the mapping

Fr : RM\{0} - R, z > gradVy(2) - e(2) = (). (55)

Here,e(z) = z/||lz]| € SV~ Notice thatFH‘l(O) equals the critical set of the Higgs
potential and that

gradFy(2) = MZ(2)e(2). (56)

We shall recover a similar formula for the mass matrix of the gauge boson.

Before we proceed with discussing the geometrical meaning of the mass matrix of the
gauge boson, we would like to briefly comment on the situation of a general Higgs poten-
tial. The main point of a rotationally Higgs potential is that the codimension of the orbit is
equal to 1. Thus, the extrinsic geometry of the orbit bundle is determined by the variation
of the vacuum sectiol considered as a hormalized eigensection of the mass matrix of the
Higgs boson. This variation in turn is determined by the (pseudo)Riemannian connection
that is induced by the flat connecti& More precisely: the connectidg admits to lift the
(pseudo)Riemannian metigg to the orbit bundle. This lifted (pseudo)metric determines a
corresponding connection, which together with the vacuum section defindéethgarten
map of the orbit bundle (along the vacuum section). The Weingarten map, however, de-
termines the extrinsic geometry of any sub-manifold (see, for ins@jydn the case of
a general Higgs potential, the situation is more complicated since the codimension of the
orbit is greater than 1 in general. Therefore, in this case one has more than one normal
direction and the appropriate normal bundle is nontrivial. Moreover, in general there are no
distinguished normal sections determining the extrinsic geometry of the orbit bundle (c.f.
loc sit). However, along the vacuum section the eigensections of the mass matrix of the
Higgs boson give rise to a particular set of normal sections like in the case of a rotationally
symmetric Higgs potential. Therefore, along the vacuum section the extrinsic geometry of
the orbit bundle becomes determined by the mass matrix of the Higgs Boson.

8 The intrinsic geometry, of course, is again determined by the (pseudo)mgtric
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To study the geometrical meaning of the mass matrix of the gauge bosq,let
be again a vacuum which spontaneously breaks the gauge symmetry that is defined by
P(M, G). Also, let (Z,V) be an appropriate vacuum pair ande Cz‘_’eq(P, RY) be
the equivariant mapping that correspondsidrhat is,V(x) = [(p, V(P))“pen;l(x) =
[((q), ZO)]IqEHél(x). Of course, the vacuum sectioh € (&) is always in the unitary

gauge with respect to itself. In other words, the vacuum section might be considered as a
section ingy phys (Where the latter is defined with respect to the vacy@n,)). Moreover,

the critical set associated with the vacuum secﬂgﬁ(O) C P coincides with(Q). Since

the vacuum section is constant, the tangential mappiig efjuals its fiber derivativé'F,,.

The latter in turn coincides with the fiber Hessiam®f, which reads

F20,: VPxpVP >R, (p.n1,n2) = p'(mn2)zo- v(P). (57)
Therefore, when restricted to the critical sﬁéjtl(O) we obtain
dF, (@) W)n' = —FB(MGy (Zo)n. n') (58)

forall ' € Lie(G). Here,n € Lie(G) is determined as the vertical partwfe 7, P with
respect to the connectid. Notice that(58) is nonzero iffy, ' € Lie(H)* ~ Wa.

Like in the case of the Higgs bundle, we may consider the adjoint bundle as a vector
bundle overP. With respect to a given vacuum section this bundle decomposes as

rhad Q) @ nhEg — F,1(0) C P. (59)

Notice that a general element sf,ad(Q) @ 7} Ec reads(p = 1(¢), 7, p’(1)20), where
7 € Lie(H) andy € Lie(H)*.
When restricted td«*u‘l(O) the tangent bundle af splits into

TPl-1, = TF, 1(0) @ 73 Ec. (60)

0
Thus,7%Ec — F,1(0) can be regarded as the “normal” bundlersf1(0) = «(Q) C P.
Consequently, any tangent veciere 7, P decomposes ag = di(q)u + wg, where
Wg € mhEglyg andu € T, Q.

There is a natural fiber metric (also denotegbgn the bundl€59), suchthatzjad(Q)®
THEG) (g is isometric to(Lie(G), B). For each directiom = (:(¢), w) € TPlF;l(O), we
define the “gradient” of, by the relation

B@radr,(t(g) (W), ¢) := dF,((q))(W)g (61)

for all ¢ € (7had(Q) ® 75 Ec)|.(g)- Then, the nontrivial part of the mass matrix of the
gauge boson reads

gradfF,(wg) = —%V*M\Z(M,Gwc, (62)
which is analogous t(b56).
Let (1, ..., Ndimwg)) € Lie(H)* be axg orthonormal eigenbasis of the nontrivial part
of M2y, (z0). Correspondingly, letvg 1, . . ., WG, dim(wg) € TPl 1, Then,

gradF,,(wG,,) = _%maM,G,leJ (63)
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and we obtain the known formula
m\Z(M,G,l = 2g§hyslge(we,z, wG,1)- (64)

If G is notsimple, the “physical coupling constapphys:, in general, is a fractional function
of the Yang-Mills coupling constants depending on(lHg¢ C Lie(G). In the case of our

previous example, wher6 = U(1) and H = {1}, we obtain the usual formula for the
“massive photonin = ﬁgphys |zol, wheregphys, is identified with the electric charge.

We have shown in this section that the bosonic mass matrices geometrically correspond
to “normal sections” (“gradients”) along the vacuum. Here, the vacuum is considered as
a sub-manifold either aPrbit(zg) or of P. In the following section, we come back to the
unitary gauge. We discuss its existence in the case of the structure group of the electroweak
sector of the (minimal) Standard Model. We are aware that like in the example -of
U(1), this can be achieved in a more straightforward way than presented in the next section.
However, we again want to put emphasis on the geometrical background.

5. G =SU() x U(1)

In the preceding section, we discussed the existence of the unitary gauge in the case of the
electromagnetic gauge group. In this section, we present an analogous analysis for the more
realistic case of the electroweak gauge group of the bosonic part of the Standard Model.

Let (M, gm) be an arbitrary spacetime. The bosonic part of the Standard Model is fixed
by the Yang-Mills—Higgs gauge theotP(M, G), pn, Vi), whereG = SU(2) x U(1)
is the well-known structure group of the electroweak sector of the Standard Model. To
simplify the notation we again put all physical parameters equal to 1. Up to an additive
constant the Higgs potential has the usual fofgiz) := (1 — |z|%)?, wherez € C2. The
representatiopy is defined byor (g2), 81))Z := 82 8WZ = &) &2z Whereg(yy € U(1)
andg) € SU(2).

The set of minima oW} is equal to the three-sphesé c R*. On the one hand, when
distinguishing a pointg € $2, we may identify(S2, zo) with the group Sg2). On the other
hand, we may also identifis3, zg) with orbit(zo). In fact, the isotropy group of an arbitrary
minimum zg, which is isomorphic taH = Ugim(1), is generated by + i € Lie(G) =
su2) & u(1). Note thatr € su2) ~ R® ¢ H (+2 = —1) depends on the chosen minimum
0. Geometrically, each minimum of the Higgs potential permits to distinguish a ¢itate
§3 c H, and the right action off C G on the electroweak structure group is given by

(SU2) x U(1)) x Ugim(1) — SU(2) x U(1),
(g2, 81), M) — (g2h@), gwha)- (65)

Here, we made use of the fact that every elemeatUeim(1) decomposes ds= h)h ) =
]’l(]_)h(z), whereh(z) = exp(td) € SU2) andh(l) = eXFXiQ) e UQD) (9 S [0, 27'([) As
a consequenceg 2, g(1)) is equivalent tc(g(z)h(_zi, 1), whereh ) := exp(w0) for g1y =
exp(if). Therefore, we may identifG /H ~ orbit(zg) with SU(2) ~ (53, z9). Moreover,
we have the following principal/eim(1)-bundle

G =SUQ2) x U(1) - orbit(zo). (2. 81) = g@hp 2. (66)
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The crucial point is that this bundle is actually trivial. We have the following bundle iso-
morphism:

SU(2) x U(1)—2—w orbit(20) x Uyn(1)

pr
orbit(zo)

which is given byx (g, g)) = (g(z)h(_Z:;'ZO, h = hyha), wherehy == g).

From the preceding section, we know that a nonvanishing gtatel (£4) of the Higgs
bosonis always in the unitary gauge with respectto the vag@ymn:). Let us then suppose
that P(M, G) is equivalent to the trivial principals-bundle. Because of the triviality of
the principalUeim(1)-bundle(66), one can lift the corresponding vacuum sectigyto the

mapping
Y M= SUQ) x U®D),  x+ x s, 1) (67)

such thad/, is gauge equivalent to the canonical vacuum section. Hgi@) = (x, vg(x))
with vg € C*° (M, orbit(zg)) andz;‘;cp(x) = (x, [|2(x)[1Z0) € EH,physx- Of course Ey phys
is defined with respect tQy, 14) and the embedding; is defined by(67).

The mapping67) defines the unitary gauge transformation similar to the case ef
U(1) discussed in the last section. Indeed, the trivialitylafl) — orbit(zg) follows
immediately fromH = {1} and the identification of/(1) with (51, z9) ~ orbit(zg). No-
tice that in both examples the lifting property is independent of the topologytofin
general, if botHP(M, G) andG (orbit(zp), 1(zp)) are trivial, then up to gauge equivalence
there exists only one vacuu(@, ¢) with respect to a given minimumy. In particular, this
vacuum is trivial (i.e.Q(M, H) is also trivial). On the other hand, if we assume space-
time to be simply connected we know that the existence of vaquairs is equivalent to
the triviality of P(M, G). When we fix a minimunzg, all vacuum pairgo, V) are gauge
equivalent tad, zp). In this case, only those vacuum sectidiare permitted that give rise
to a lift similar to (67). In the particular case df, this hold true, iff Qs (M, H) is also
trivial.

To summarize, ifP(M, G) is trivial, then a necessary condition for gauge inequiva-
lent vacua to exist with respect to a given minimagis that the principal(zo)-bundle
G (orbit(zp), 1(zp)) is nontrivial. Whether this condition is also sufficient depends on the
topology of spacetime.

6. Summary and outlook

We geometrically described the possible ground states of the Higgs boson as sections in
the orbit bundle, which is associated with the data of a general Yang-Mills—Higgs gauge the-
ory. The notion of vacuum pairs has been used to geometrically describe the Higgs—Kibble
mechanism and the unitary gauge. We also gave a necessary and sufficient condition for
the existence of the unitary gauge in the case of rotationally symmetric Higgs potentials.
The notion of vacuum pairs also permits a geometrical interpretation of the bosonic mass
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matrices and the physical notion of “free” bosons also within the frame of gauge theories.
Moreover, since the notion of vacuum pairs geometrically generélize)) in the case

of the trivial principal G-bundle, it permits to relate the notion of mass to the topology

of spacetime. We gave a necessary and sufficient condition for the existence of vacuum
pairs in the case where; (M) = 0. This case turned out to be particularly restrictive. It
would be interesting to also study less restrictive spacetime topologies giving rise to gauge
inequivalent vacuum pairs.

From a geometrical perspective, we have seen how the masses of the bosons are re-
lated to “normal vector fields” of sub-manifolds which are determined by the vacuum.
Likewise, it can be shown that the masses of the fermions together with the curvature of
spacetime, determine the “intrinsic curvature” of the bundles which geometrically represent
“free fermions”. This will be discussed within the geometrical frame of generalized Dirac
operators in a forthcoming paper.
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