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Abstract

In this paper, we discuss the mechanism of spontaneous symmetry breaking from the point
view of vacuum pairs, considered as ground states of a Yang-Mills–Higgs gauge theory. We treat
a vacuum as a section in an appropriate bundle that is naturally associated with a minimum of a
(general) Higgs potential. Such a vacuum spontaneously breaks the underlying gauge symmetry
if the invariance group of the vacuum is a proper subgroup of the gauge group. We show that
each choice of a vacuum admits to geometrically interpret the bosonic mass matrices as “normal”
sections. The spectrum of these sections turns out to be constant over the manifold and independent
of the chosen vacuum. Since the mass matrices commute with the invariance group of the chosen
vacuum one may decompose the Hermitian vector bundles which correspond to the bosons in the
eigenbundles of the bosonic mass matrices. This decomposition is the geometrical analog of the
physical notion of a “particle multiplet”. In this sense, the basic notion of a “free particle” also
makes sense within the geometrical context of a gauge theory, provided the gauge symmetry is
spontaneously broken by some vacuum.

We also discuss the Higgs–Kibble mechanism (“Higgs Dinner”) from a geometrical point of
view. It turns out that the “unitary gauge”, usually encountered in the context of discussing the
Higgs Dinner, is of purely geometrical origin. In particular, we discuss rotationally symmetric
Higgs potentials and give a necessary and sufficient condition for the unitary gauge to exist. As a
specific example, we discuss in some detail the electroweak sector of the Standard Model of particle
physics in this context.
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1. Introduction

We consider the mechanism of spontaneous symmetry breaking from a geometrical view-
point. For this we treat “elementary particles” as (a gauge equivalence class of) Hermitian
vector bundles over an orientable spacetime(M, gM). Here,gM is an arbitrary but fixed
(pseudo)metric (see also, for instance[3]). The possible states of the particles are geometri-
cally represented as sections of the corresponding vector bundles. The gauge group is then
given by the subgroup of automorphisms of these bundles which induce the identity map
on the spacetime manifold. In the present paper, we shall focus on bosons only. We also
restrict ourselves to the case of a pure Yang-Mills–Higgs gauge theory. We characterize
such a gauge theory by a specific set of geometrical data. In particular, the gauge group will
be identified with the gauge group of a principalG-bundleP(M, G). From the given data
we build two bundles, one of which geometrically represents the Higgs boson. Correspond-
ingly, we call this bundle the “Higgs bundle”. The other bundle, which we call the “orbit
bundle”, is a certain sub-bundle of the Higgs bundle. SectionsV of the orbit bundle physi-
cally represent possible ground states of the Higgs boson. In fact, these sections minimize
the Higgs potential which we also treat as a globally defined object. Accordingly, we call
such a sectionV a “vacuum section”.

From a geometrical perspective, a vacuum section is in one-to-one correspondence with
anH-reduction ofP(M, G). Here, the (closed) subgroupH ⊂ G corresponds to the stabi-
lizer group of some minimumz0 of a general Higgs potentialVH. Therefore, this subgroup
gives rise to the invariance group of the “vacuum” which is defined by the sectionV (i.e. by
a ground state of the Higgs boson). As usual, if the invariance group is a subgroup of the
gauge group, we call the latter spontaneously broken by the vacuum.

We then introduce the notion of “vacuum pairs”. They consist of vacuum sectionsV and
connectionsΞ on the Higgs bundleξH which are compatible withV. Let ∂ be the covariant
derivative with respect toΞ. Then, the vacuum pair(∂,V) geometrically generalizes(d, z0)

usually considered in particle physics. Of course, the latter makes sense only ifP(M, G)

is supposed to be the trivial principalG-bundleM×G
pr1→M. In general, there exist gauge

inequivalent vacuum pairs (also in the case whereP(M, G) is supposed to be trivial). We
will show that, if spacetime is simply connected, then all vacuum pairs are gauge equivalent
to the canonical one.

Since the ground states of the Higgs boson are treated as a globally defined objects (sec-
tions) the physical decomposition of the Higgs boson into the Goldstone and the physical
Higgs boson is geometrically reflected by aZ2-grading of the reduced Higgs bundle. Like-
wise, with respect to a vacuum pair, the reduced adjoint bundle, which geometrically repre-
sents a gauge boson, splits into two real vector bundles. These represent the residual gauge
boson and a massive vector boson. In fact, the rank of the vector bundle representing the mas-
sive gauge boson equals the rank of the “Goldstone bundle”. This gives rise to a geometrical
description of the known Higgs–Kibble mechanism (i.e. to the so-called “Higgs Dinner”).

The description of the mechanism of spontaneous symmetry breaking in terms of an
H-reduction of a given principalG-bundle is well known and can be found, for instance,
in [1,2] or [9]. We also refer to[10] and the corresponding references therein like, e.g.
[7]. For a good exposition of the fiber bundle description of gauge theories that is between
“mathematics and physics”, we refer to[11].
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Though clear from a mathematical point of view, the geometrical description of the ground
states of the Higgs boson in terms of vacuum sections seem to be less known. The notion
of vacuum section is physically intuitive and permits to treat the bosonic mass matrices as
sections as well. We show that the mass matrices can be regarded as “normal vector fields” of
specific sub-manifolds and thus are related to the extrinsic curvature of these sub-manifolds.
The bundles representing the physical Higgs boson and the massive gauge boson can be
decomposed into the eigenbundles of the (non-trivial part of the) respective bosonic mass
matrices. This expresses the notion of “particle multiplets” in purely geometrical terms
without reference to any gauge. In particular, the proposed setup allows to geometrically
describe “free particles” within gauge theories. The notion of vacuum pairs also gives
rise to a geometrical understanding of the unitary gauge. For a specific class of Higgs
potentials, we present a necessary and sufficient condition for this gauge to exist. This
class of potentials includes the Higgs potential postulated in particle physics. As a specific
example, we discuss the unitary gauge in the case of the electroweak sector of the Standard
Model from the geometrical point of view presented here.

The aim of the paper is to emphasize the geometry which underlies spontaneously broken
gauge theories. In particular, we want to stress how the notion of mass might be related to
the topology of spacetime if the mechanism of spontaneous symmetry breaking is treated
from a global point of view. The motivation for the present work might be best summarized
by quoting a famous statement by H. Weyl:

“Every physical quantity will be represented by a geometrical object”.

One may ask for the geometrical objects representing “free particles” and their corre-
sponding “masses” within the geometrical frame of (spontaneously broken) gauge theories.
To geometrically consider “particles” as (gauge equivalent) vector bundles and states as sec-
tions mainly results from the well-known circumstance that a general gauge group seems
to have no physical realization. In particular, a (local) trivialization of a general principal
G-bundleP(M, G) has no physical counterpart.1 Likewise, a specific gauge condition
cannot be physically realized, in general. Therefore, any reference to some gauge (or lo-
cal trivialization) should be avoided in a geometrical description of “particles” and their
properties like “mass” and “charge”. For this reason, it seems inadequate to geometrically
identify particles with sections and “free particles” with “components” of the typical fiber
with respect to some (local) trivialization. SinceP(M, G) has no direct physical meaning,
its definite topological structure can only be determined by additional physical arguments.
For instance, if there were no (massless) gauge boson in nature, thenP(M, G) would have
to be trivial. Or, as we will show, if spacetime is supposed to be simply connected, then
vacuum pairs exist if and only ifP(M, G) is trivial. To put emphasis on a possible relation
between the topology ofM andP(M, G) on the basis of spontaneously broken gauge
theories is a matter of concern of this paper.

The paper is organized as follows. InSection 2, we introduce the notion of vacuum
pairs and discuss the bosonic mass matrices as sections. InSection 3, we consider the

1 This is quite different from the case of the theory of general relativity. Not only does the frame bundle
of spacetime have a physical meaning but in relativity there also exist physical quantities like, e.g. energy and
momentum that can be defined only with respect to some reference frame (local trivialization of the frame bundle).
This should not be confounded with the assumption that any physical statement should be frame-independent.
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Higgs–Kibble mechanism from a geometrical perspective and discuss the unitary gauge, as
well as the notion of “free particles” within the context of gauge theories. InSection 4,
we geometrically interpret the bosonic mass matrices as “normal sections” of specific
sub-manifolds defined by a vacuum. Finally, inSection 5, we discuss the existence of
the unitary gauge in the case of the structure group of the electroweak sector of the Stan-
dard Model from the geometrical viewpoint presented in this paper. We finish with a brief
summary and outlook.

2. Vacuum pairs and the bosonic mass matrices

The aim of this section is to geometrically formulate the physical notion of a “vacuum”
within the framework of gauge theories. In doing so, the basic notion we have to introduce
is that of an “orbit bundle”. To start with, we denote by(M, gM) a smooth orientable
(pseudo)Riemannian manifold. Topologically,M is supposed to be a Hausdorff space
that is paracompact and (pathwise) connected. Since in this paper a (pseudo)metricgM is
assumed to be fixed we simply refer toM as “spacetime”.

A Yang-Mills–Higgs gauge theoryis specified by the data(P(M, G), ρH, VH). Here,

P(M, G) denotes a principalG-bundleP
πP→M, where the structure groupG is assumed to

be a compact, real and semi-simple Lie group with Lie algebra Lie(G). The corresponding
Killing form is denoted byκG. The unitary (orthogonal) representationρH : G → Aut(KN)

(K = C, R) is assumed to be faithful. The smooth real valued functionVH ∈ C∞(KN, R)

is supposed to be bounded from below and to beG-invariant. Moreover, transversally to
each orbit of minima ofVH the Hessian of this function is positive definite. In this caseVH
is called ageneral Higgs potential.

An immediate consequence of the above given data is the existence of a specific Hermitian
vector bundleξH:

πH : EH : P ×ρH K
N →M. (1)

We call this bundle theHiggs bundle. It is considered to be the geometrical analog of the
Higgs boson. Accordingly, states of the Higgs boson are identified with sectionsΦ ∈ Γ(ξH).

Because of itsG-invariance a general Higgs potential induces a smooth mapping (also
denoted byVH):

VH : Γ(ξH) → C∞(M, R), Φ �→ φ∗VH. (2)

Here,φ ∈ C∞ρ-eq(P, K
N) 	 Γ(ξH) is theρH-equivariant mapping, which corresponds to the

stateΦ of the Higgs boson, i.e.Φ(x) = [(p, φ(p))]|
p∈π−1

P (x)
. Then,φ∗VH is defined by

φ∗VH(x) := VH(φ(p))|
p∈π−1

P (x)
. The corresponding action functional is denoted by2:

VH : Γ(ξH) → R, Φ �→ 〈φ∗VH, 1〉. (3)

2 Of course, this functional is only well defined if the states satisfy suitable boundary conditions (orM is
supposed to be compact).
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Here,〈·, ·〉 denotes the usual pairing onΩ(M, E) := Γ(ξΛ(T ∗M) ⊗ ξ), whereξΛ(T ∗M) is
the Grassmann bundle andξ any Hermitian vector bundle overM with total spaceE. We
call the action(3) theglobal Higgs potential.

Let A(ξH) be the affine set of all associated connections on the Higgs bundle. The
Yang-Mills–Higgs action, based on the data(P(M, G), ρH, VH), then reads

IYMH : A(ξH)× Γ(ξH) → R,

(A, Φ) �→ s〈FA , FA〉 + 〈∂AΦ, ∂AΦ〉 + sVH(Φ) ≡ IYM (A)+ IH(A, Φ). (4)

Here,s = ±1 depends on the signature ofgM andFA ∈ Γ(ξΛ2(T ∗M) ⊗ ξad(P)) is the field
strength with respect to the connectionA, and∂A is the corresponding covariant derivative
onΓ(ξH). By ξad(P) we mean theadjoint bundle:

πad: ad(P ) := P ×G Lie(G) →M. (5)

Thegauge groupofP(M, G) is denoted byG. As usual we identifyGwith C∞Ad-eq(P, G) 	
Auteq(P ). Here, the latter denotes the subgroup of right equivariant automorphisms onP

which induce the identity onM.
Besides the Higgs bundle and the Yang-Mills–Higgs action, there is still another geo-

metrical object that is naturally associated with the data specifying a Yang-Mills–Higgs
gauge theory. For this, letz0 ∈ K

N be a minimum ofVH. We denote by, respectively,
orbit(z0) ⊂ K

N andI(z0) ⊂ G the orbit associated withz0 and the isotropy group of the
minimum. Up to conjugation, there is a unique closed subgroupH ⊂ G such thatH 	 I(z0)

and orbit(z0) 	 G/H . Thus, up to equivalence (within the category of bundles) a minimum
z0 is associated with a specific sub-bundleξorbit(z0) ⊂ ξH of the Higgs bundle:

πorb: Orbit(z0) := P ×ρorb orbit(z0) →M. (6)

Here,ρorb := ρH|orbit(z0). We call this fiber bundle theorbit bundlewith respect to the
minimumz0. Notice that sectionsV ∈ Γ(ξorbit(z0)) of the orbit bundle can also be considered
as sections of the Higgs bundle and thus as specific states of the Higgs boson. Since these
states minimize the global Higgs potential(3) we call themvacuum sections.

As a closed subgroup of the structure groupG, the groupH also acts onP from the right
and therefore makesP

κ→Orbit(z0) a principalH-bundle. As a consequence, every vacuum
section corresponds to anI(z0)-reduction ofP(M, G). This means thatV ∈ Γ(ξorbit(z0))

determines (up to equivalence) a unique principalH-bundleQ(M, H) together with an
embeddingQ

ι→P , such that the following diagram commutes:

We call(Q, ι) avacuumwith respect to a minimumz0. Notice that a vacuum also determines
a vacuum section by puttingV(x) := [(ι(q), z0)]|

q∈π−1
Q (x)

for all x ∈M. Therefore, there is
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a one-to-one correspondence between the ground states of the Higgs boson and the vacua
(for instance, cf. Chapter 1.5, Proposition 5.6 in[6]). We call the reduced gauge group
H 	 Auteq(Q) the invariance group of the vacuum(Q, ι). A Yang-Mills–Higgs gauge
theory is calledspontaneously brokenwith respect to a vacuum(Q, ι) if the invariance
group of the latter is a proper subgroup of the original gauge groupG. The gauge symmetry
is called maximally broken by the vacuum if its invariance group is trivial. Note that in this
caseP(M, G) must necessarily be trivial. However, theH-reduction of a trivial principal
G-bundle can be nontrivial. In general, we call a vacuum(Q, ι) trivial iff Q(M, H) is

equivalent to the trivial principalH-bundleM×H
pr1→M. Notice that there is a distinction

between a trivial vacuum and the case where the gauge symmetry is completely broken, i.e.
H = {e}.

ThoughQ(M, H) is not equivalent to the original principalG-bundle, everyG-associated

fiber bundle is equivalent to itsH-reduction. More precisely: letξE : E := P×ρ W
πE→M be

aG-associated fiber bundle with typical fiberW and representationG
ρ→Diff (W). Moreover,

let ξE,red be the corresponding reduced fiber bundle with respect to a vacuum(Q, ι), i.e.
πE,red : Ered := Q ×ρred W → M. Here,ρred := ρ|H. Then, we haveξE 	 ξE,red. The
corresponding bundle isomorphism (over the identity onM) is given by the diffeomorphism:

Ered→ E, [(q, w)] �→ [(ι(q), w)]. (7)

This will be crucial in what follows. For instance, every vacuum section corresponds to
a constant section (also denoted byV) in the reduced Higgs bundleξH,red defined by the
appropriate vacuum(Q, ι):

V : M→ EH,red, x �→ [(q, z0)]|
q∈π−1

Q (x)
. (8)

This geometrically generalizes the following situation usually encountered in physics. Let

P(M, G) be the trivial principalG-bundleM × G
pr1→M. In this case, the orbit bundle

with respect to a minimumz0 has a canonical section given by the constant mapping (also
denoted byz0):

z0 : M→M× orbit(z0), x �→ (x, z0). (9)

In this case, the corresponding vacuum is simply given by the inclusion:

ι : M×H ↪→M×G, (x, h) �→ (x, h). (10)

Clearly, (8) generalizes(9) to geometrical situations where no specific assumption on
P(M, G) has been made. As we have already mentioned, even in the case whereP(M, G)

is trivial there might exist nontrivial vacua that cannot be gauge equivalent to the canon-
ical vacuum(10). Therefore, it seems appropriate to deal with the more general situation
described by(8).

A vacuum section(8) defines a constant section of the reduced Higgs bundle. It is also
covariantly constant with respect to any connectionA ∈ A(ξH,red). The latter denotes the
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affine set of associated connections on the reduced Higgs bundle. Thus, with respect to a
vacuum(Q, ι) there exists a distinguished affine subset of connections onP(M, G).3

Definition 2.1. A connectionA onP(M, G) is called to be “compatible” with a vacuum
sectionV if it also defines a connection onQ(M, H).

Notice that a connectionA on P(M, G) is compatible withV, iff its connection form
ω ∈ Ω1(P, Lie(G)) satisfiesι∗ω ∈ Ω1(Q, Lie(H)).

Definition 2.2. A Yang-Mills–Higgs pair(A, Φ) ∈ A(ξH) × Γ(ξH) is called a “vacuum
pair” providedΦ ≡ V is a vacuum section andA ≡ Ξ is induced by a flat connection on
P(M, G), which is compatible withV. The corresponding covariant derivative onΓ(ξH) is
denoted by∂.

A vacuum(Q, ι) defines a minimum of the energy of the Higgs boson. In fact, let us
denote by℘H the horizontal projector of a reducible connectionA onP(M, G). It induces
a corresponding horizontal projector (and thus a connection) on the reduced orbit bundle
by

℘̃H
[(q,z)]([(u, w)]) := [(℘H

q (u), 0)]. (11)

Here,(u, w) ∈ TqQ ⊕ Tzorbit(z0).4 Correspondingly, the appropriate vertical projection
reads

℘̃V
[(q,z)]([(u, w)]) = [(0, w + ρ′H((ι∗ω)q(u))z)], (12)

whereω ∈ Ω1(P, Lie(G)) is the connection form ofA andρ′H ≡ dρH(e) is the “derived
representation” of the Lie algebra ofG.

Consequently, along im(V) ⊂ Orbit(z0), we obtain the following identity for a connection
onP(M, G) compatible with the vacuum(Q, ι):

℘̃V
[(q,z0)]([(u, w)])

= [(0, w)] = [(u, w)] − dV(πorb([(q, z0)]))(dπorb([(q, z0)]))([(u, w)]). (13)

In other words, when restricted to the vacuum im(V) any associated reducible connectionA

looks like the canonical flat connection that is defined by d(V ◦πorb). In particular, formula
(13) implies that for any connectionA onP(M, G) compatible with the vacuum sectionV
one obtains

∂
EH,red
A V = ℘̃V

V ◦ dV ≡ 0. (14)

3 Note that every connection on the reduced principalH-bundleQ(M, H) induces a connection on the principal
G-bundleP(M, G). But not vice versa, in general. If the latter happens to hold true, the connection is said to
be reducible. Clearly, the set of reducible connections onP(M, G) is in one-to-one correspondence with the
connections onQ(M, H).

4 Notice that(u′, w′) ∼ (u, w) if and only if there existsh ∈ H andη ∈ Lie(H), such thatTqhQ � u′ =
dRh(q)(u− d/dt(q exp(tadh(η)))|t=0) andTρH(h−1)zorbit(z0) � w′ = ρ(h−1)(w + ρ′H(adh(η))z).
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In contrast, a vacuum pair(Ξ,V) geometrically represents a minimum of the energy of
a Yang-Mills–Higgs gauge theory. It thus generalizes the canonical vacuum pair(d, z0),
usually referred to in particle physics. The following shows in what sense the canonical
vacuum pair is unique (up to gauge equivalence). In fact, the existence of vacuum pairs
relates the topology of spacetimeM to that ofP(M, G).

Proposition 2.1. Let again(P(M, G), ρH, VH) be the data defining a Yang-Mills–Higgs
gauge theory. Also, let z0 be some minimum of a general Higgs potentialVH. If spacetime
is simply connected, then there exists(up to gauge equivalence) at most one vacuum pair
in A(ξH)× Γ(ξH) with respect to the chosen minimum.

Proof. Let π1(M) = 0. Then,P(M, G) possesses a flat connection iff the principal

G-bundle is equivalent toM×G
pr1→M. Moreover, the flat connection is equivalent to the

canonical connection on the trivial principalG-bundle (cf. Chapter 9.2, Proposition 9.2 in
[6]). Thus, up to equivalence we may assume thatP(M, G) is trivial. Of course, the same
holds true for any vacuum that possesses a flat connection. Since the embedding is right
equivariant we obtain

whereι(x, h) = (x, γ(x)h) andγ ∈ C∞(M, G). Consequently, if there exists a vacuum
pair (∂,V) it must be gauge equivalent to(d, z0). �

Notice that nontrivial vacua may exist even if spacetime is simply connected. The notion
of vacuum pairs is clearly more restrictive than that of vacua.

So far we have discussed a minimum of the energy of a Yang-Mills–Higgs gauge theory
from the perspective of Yang-Mills–Higgs pairs. Next we will show how the notion of a
vacuum pair can be used to “globalize” thebosonic mass matrices. For this letK = R. In
the case whereK = C, we regard the Higgs bundle as a real vector bundle of rank 2N.
Accordingly, in what follows the general Higgs potential is considered as a real function and
ρH denotes an orthogonal representation ofG (the real form of a unitary representation).

Definition 2.3. Let (Q, ι) be a vacuum with respect to a minimumz0 ∈ R
N of a general

Higgs potentialVH. Theglobal mass matrix of the Higgs bosonis the sectionV ∗M2
H ∈

Γ(ξEnd(EH)) defined by the equivariant mapping:

ν∗M2
H : P → End(RN), p = ι(q)g �→ ρH(g−1)M2

H(z0)ρH(g). (15)

Here,M2
H(z0) ∈ End(RN) is given byM2

H(z0)z · z′ := Hess(VH)(z0)(z, z′) for all z, z′ ∈
R

N . The equivariant mappingν ∈ C∞ρ-eq(P, orbit(z0)) corresponds to the vacuum section of

(Q, ι), i.e.ν(P ) = ρH(g−1)z0 for all p = ι(q)g ∈ P .

Notice that with respect to a vacuum pair(Ξ,V), we may identify the affine set of all
(principal) connections onP(M, G) with ξad(P ). The latter can in turn be identified with
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the bundleξYM :

πYM : EYM := Q×H Lie(G) →M. (16)

We call the bundleτ∗M ⊗ ξYM the Yang-Mills bundleand interpret it as the geometrical
analog of a “real” gauge boson.5

Definition 2.4. The global mass matrix of the gauge bosonis the sectionV ∗M2
YM ∈

Γ(ξEnd(ad(P ))) defined by the equivariant mapping:

ν∗M2
YM : P → End(Lie(G)), p = ι(q) �→ adg−1 ◦M2

YM (z0) ◦ adg. (17)

Here,M2
YM (z0) ∈ End(Lie(G)) is defined byβ(M2

YM (z0)η, η′) := 2ρ′H(η)z0 ·ρ′H(η′)z0 for
all η, η′ ∈ Lie(G). The ad-invariant bilinear formβ denotes the most general Killing form
on Lie(G) parameterized by the “Yang-Mills coupling constants”.

Though defined with respect to a vacuum pair the spectrum of the bosonic mass matrices
is constant throughoutM and only depends on the orbit of the minimumz0. Moreover,
both sectionsV ∗M2

H,V ∗M2
YM commute with the invariance group of the vacuum pair. This

proves the following lemma.

Lemma 2.1. Let (Ξ,V) be a vacuum pair of a spontaneously broken Yang-Mills–Higgs
gauge theory. The Higgs boson and the gauge boson represented, respectively, by ξH,red
and byξYM decompose into“bosons of mass m”:

ξH,red= ⊕
m2

H∈spec(M2
H)

ξH,m2
H
, (18)

ξYM = ⊕
m2

YM∈spec(M2
YM )

ξYM ,m2
YM

. (19)

Here, ξH,m2
H

andξYM ,m2
YM

denote the appropriate eigenbundles ofV ∗M2
H and ofV ∗M2

YM ,
respectively.

Notice that this decomposition explicitly refers to a vacuum pair. However, the rank of
ξH,m2

H
, ξYM ,m2

YM
only depends on the orbit ofz0 and is thus independent of the vacuum pair

chosen.
In the next section, we will discuss another decomposition of the Higgs bundle geomet-

rically representing the splitting of the Higgs boson into the “Goldstone boson” and the
“physical Higgs boson”. The rank of the corresponding vector bundles equals the rank of
V ∗M2

YM and ofV ∗M2
H. This permits a geometrical interpretation of the so-called “Higgs

Dinner”. We discuss its dependence on vacuum pairs and how the latter are related to the
“unitary gauge”.

5 τ∗M denotes the cotangent bundle. Sometimes we will omit the spin degrees of freedom and refer to the “internal
bundle”ξYM as the gauge boson. In contrast to a real gauge boson, a connection onP(M, G) is interpreted as the
geometrical analog of a “virtual” gauge boson.
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3. The “Higgs Dinner”

In this section, we discuss the Higgs–Kibble mechanism (“Higgs Dinner”) from a geo-
metrical perspective. For this, we first translate Goldstone’s theorem into geometrical terms
and then show how the Higgs Dinner is related to the notion of vacuum pairs. In particular,
we want to stress that the existence of the so-called “unitary gauge” is not necessary for the
existence of the Higgs Dinner, cf. Chapter 10.3 in[1].

Let z0 ∈ K
N be a minimum of a general Higgs potentialVH. In what follows, we will

mainly be interested in the real caseK = R. Thus, ifK = C we will consider the real form
of the unitary representationρH and take the Higgs bundleξH as a real vector bundle of rank
2N. Likewise, we will regard the Higgs potential as a real function. Let againH = I(z0) be
the isotropy group of the chosen minimumz0 ∈ R

N and Lie(H)⊥ ⊂ Lie(G) the orthogonal
complement of Lie(H) with respect to the Killing formκG on G. We then consider the
following two subspaces ofRN :

WG := {z ∈ R
N |z = T z0, T ∈ ρ′H(Lie(H)⊥) ⊂ so(N)}, (20)

WH,phys := W⊥
G . (21)

SinceH ⊂ G is a closed subgroup, it follows that both theGoldstone spaceWG and the
physical Higgs spaceWH,phys areH-invariant subspaces ofRN . As a consequence, one
may associate with a vacuum(Q, ι) the two real vector bundlesξG, ξH,phys defined by

πG : EG := Q×ρG WG →M, (22)

πH,phys : EH,phys := Q×ρH,phys WH,phys→M. (23)

Here, respectively,ρG := ρH|WG, ρH,phys := ρH|WH,phys denotes the restrictions ofρH to the
Goldstone and the physical Higgs space(20) and (21)with respect to the subgroupH . For
instance,ρG(h) := ρH(h)|WG for all h ∈ H . We have thus proved the following lemma.

Lemma 3.1. Let (P(M, G), ρH, VH) be the data of a Yang-Mills–Higgs gauge theory.
Also let(Q, ι) be a vacuum with respect to some minimumz0 ∈ K

N of VH. Provided that
N + dim(H)− dim(G) ≥ 0 the reduced Higgs bundleξH,red (considered as a real vector
bundle) is Z2-graded:

ξH,red= ξG ⊕ ξH,phys, (24)

where, respectively, ξG and ξH,phys denote the Goldstone and the physical Higgs bundle
with respect to the chosen vacuum.

Note that

rk(ξH,phys) = dim(im(V ∗M2
H)), (25)

rk(ξG) = dim(ker(V ∗M2
H)). (26)

Correspondingly, the rank of the Goldstone and the physical Higgs bundle only depends on
the orbit ofz0 and not of the chosen vacuum(Q, ι).
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The geometrical meaning of the Goldstone bundle is as follows: letV ∈ Γ(ξH) be the
vacuum section that corresponds to(Q, ι). Then, we have the isomorphism (x ∈M):

EG|x 	 VV(x)Orbit(z0). (27)

Here,VV(x)Orbit(z0) denotes the vertical subspace of the tangent spaceTV(x)Orbit(z0) along
the vacuum sectionV. Thus, the Goldstone bundle can be identified with the vertical bundle
of the orbit bundle along the chosen vacuum section.

The equality(26)can be considered as a geometrical variant ofGoldstone’s Theorem(cf.
[4]); there is a massless spin-zero boson if the gauge symmetry is spontaneously broken.
However, by interacting with the gauge boson the Goldstone boson physically manifests
itself as the “longitudinal component” of certain massive spin-one bosons. This is known
to be the Higgs–Kibble mechanism (cf.[5]). In fact, we obtain

rk(ξG) = dim(im(V ∗M2
YM )) (28)

and the massive vector bosons which the Higgs Dinner refers to, are geometrically rep-
resented by the eigenbundles(19) of V ∗M2

YM . Notice that ifP(M, G) is supposed to be
nontrivial there must be at least one (massless) gauge boson.

Usually, the Higgs Dinner assumes the existence of a specific gauge, called theunitary
gauge. It is assumed that an equivariant mappingγ ∈ C∞Ad-eq(P, G) exists for everyΦ ∈
Γ(ξH), such thatγ(P )−1φ(P ) is orthogonal to the Goldstone spaceWG for all p ∈ P . Here,
φ ∈ C∞ρ-eq(P, K

N) is the equivariant mapping which corresponds to the sectionΦ. For this
reason, the Goldstone boson is sometimes considered as being “spurious” for it can be
“gauged away”. Of course, this is misleading because of the manifestation of the Goldstone
boson as longitudinal components of massive vector bosons(28). In what follows, we give
a geometrical description of both the Higgs Dinner and the unitary gauge and show how
they are related to the vacuum chosen.

Definition 3.1. Let (Q, ι) be a vacuum with respect to some minimumz0 and letΦ ∈ Γ(ξH)

be a state of the Higgs boson. We define the Higgs boson to be in the “unitary gauge” with
respect to the chosen vacuum iffι∗Φ ∈ Γ(ξH,phys). Here,ι∗Φ(x) := [(q, ι∗φ(q))]|

q∈π−1
Q (x)

andφ ∈ C∞ρ-eq(P, K
N) is the corresponding equivariant mapping ofΦ.

Of course, one can always obtain such aΦ simply by projecting out the Goldstone part of
Φ. However, this raises the question why this can always be done without loss of generality?
A sufficient condition is given by the following proposition.

Proposition 3.1. Let (Q, ι) be a vacuum with respect to some minimumz0 of a general
Higgs potentialVH. Let Φ ∈ Γ(ξH) be a state of the Higgs boson(again, considered as a
real vector bundle). If the mapping

Fφ : P → Lie(G)∗, p �→
{

Lie(G) → R

η �→ ρ′H(η)z0 · φ(P )
(29)

is of rankdim(G)− dim(H) andF−1
φ (0) ⊂ ι(Q) ⊂ P , thenΦ is in the unitary gauge with

respect to the vacuum(Q, ι).
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Proof. The local part of the proof is the same as given in[1, Chapter 10.3, Theorem 10.3.10].
The idea goes back to Weinberg[12]. SinceG is assumed to be compact the mapping:

Θφ : P → R, p �→ z0 · φ(P ) (30)

has a critical pointp0 ∈ π−1
P (x) for eachx ∈M, andF−1

φ (0) ⊂ P is the critical set ofΘφ.
Note thatΘφ isH-invariant and thus descends to a well-defined mapping on the orbit bundle.
The rank condition of the proposition then guarantees thatF−1

φ (0) is a smooth sub-manifold

of dimension dim(M)+dim(H), which is transversal to each fiberπ−1
P (x) ⊂ P . Therefore,

by the implicit function theorem there exists a family of local trivializations(Uα, σα)α∈Λ

of P(M, G) (Λ some index set), such that im(σα) ⊂ F−1
φ (0). As a consequence of the

assumptionF−1
φ (0) ⊂ ι(Q), the mappingM � x �→ [(σα(x))] ∈ Orbit(z0) is well defined

and coincides with the vacuum section that corresponds to(Q, ι). Let ι(q) = σα(x) and
wG = [(q, T z0)] = (x, wG) ∈ EG be arbitrary. We may writeΦ(x) = [(σα(x), φ(σα(x)))]
and thus〈wG, ι∗Φ(x)〉 = T z0 · ι∗φ(q) = 0. Therefore,ι∗Φ is orthogonal to the Goldstone
bundle defined with respect to the vacuum(Q, ι). �

We call the setF−1
φ (0) ⊂ P , defined by the mapping(29), the critical set associated

with a stateΦ ∈ Γ(ξH) of the Higgs boson. If this critical set defines a sub-manifold of
dimension dim(M) + dim(H), then it also defines a vacuum sectionVφ ∈ Γ(ξorbit(z0)).
Clearly, with respect to the corresponding vacuum(Qφ, ιφ) the stateΦ is in the unitary
gauge. There exists a gauge transformationf ∈ Auteq(P ) such thatf ∗Φ is in the uni-
tary gauge with respect to the original vacuum(Q, ι) iff the latter is gauge equivalent to
(Qφ, ιφ). Note that a necessary condition for the existence of a vacuum, with respect to
which a stateΦ of the Higgs boson is in the unitary gauge, is thatΦ does not vanish.
Before discussing a specific class of Higgs potentials, such thatΦ ∈ Γ(ξH)\{O}, with O
being the zero section, is also a sufficient condition for the existence of an appropriate vac-
uum, we give a simple example clarifying the geometrical idea which underlies the unitary
gauge.

For this letG = U(1) andP(M, G) be equivalent to the trivial principalU(1)-bundle

M × U(1)
pr1→M (according to the corresponding remark in the last section this holds

true, in particular, if all “gauge bosons” are supposed to be massive). LetN = 1 and the
representationρH be the defining one onC. Also let us assume thatVH(z) := (1− |z|2)2.
In this case, there is only one orbit of minima which can be identified with the one-sphere
S1 ⊂ R

2. Note that one has to select one minimumz0 ∈ C in order to identifyU(1) with
S1 (here,H = {1}). We also may identifyΓ(ξH) with C∞(M, C) and, correspondingly,
Γ(ξorbit(z0)) with C∞(M, S1). Up to equivalence the critical set of a stateϕ ∈ C∞(M, C)

of the Higgs boson reads

F−1
ϕ (0) = {(x, g) ∈M× U(1)|Tz0 · g−1ϕ(x) = 0} ⊂ P. (31)

Here,T ∈ so(2) is the real form of the generator ofU(1). In the case at hand the fiber
derivative of the mapping(29)can be identified with the (pointwise) bilinear form:

FFϕ : P × R
2 → R, (p = (x, g), (λ, λ′)) �→ −λλ′z0 · g−1ϕ(x). (32)
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Therefore, ifϕ ∈ C∞(M, C\{0}), then the critical set ofϕ defines a smooth sub-manifold
of P of dimension dim(M) (sinceH is trivial). In this case, one can define a gauge trans-
formation by the mapping6

γ :M→ U(1), x �→ g, (33)

whereg ∈ pr−1
1 (x) ∩ F−1

ϕ (0). Indeed, in the particular case at hand the critical set of a
nonvanishing state can be considered as the graph of the unitary gauge transformation(33).
The corresponding vacuum sectionVϕ is given byVϕ(x) := (x, γ(x)z0) which obviously is
gauge equivalent to the canonical one. Finally, the vacuum(Qϕ, ιϕ) may be identified with
the embedding

M→M× U(1), x �→ (x, γ(x)) (34)

which can be considered as an element of the gauge group (unitary gauge transformation).
This particularly exhibits the relation between the unitary gauge of a state and the vacuum,
geometrically considered as a section in the Higgs bundle.

Of course, the example discussed above is very special in several respects and can also
be discussed more straightforwardly. The reason for discussing the above example in some
detail is to demonstrate certain geometrical features that can be generalized to less trivial
examples. This is what we want to discuss next.

Concerning the existence of the unitary gauge, the basic feature of the above example is
that the orbit of any minimum is homeomorphic to a sphere of codimension one. Note that
any vacuum section is in the unitary gauge with respect to itself. Thus, a vacuum section
generates the physical Higgs bundle, provided the latter is of rank one. Moreover, it is
straightforward to see that in the unitary gauge with respect to the vacuum(Qϕ, ιϕ) the
given sectionΦ reads (x ∈M)7:

Φ(x) = ‖Φ(x)‖Vϕ(x). (35)

Note thatι∗ϕΦ(x) = (x, |ϕ(x)| z0) ∈ EH,phys|x. The basic features of the above example can
easily be generalized.

Definition 3.2. We call a general Higgs potentialVH “rotationally symmetric” if there exists
a smooth real valued functionfH ∈ C∞(R+) such thatVH = fH ◦ r. Here,KN r→R+, z �→
|z| denotes the “radius function”.

Clearly, most of the examples studied in physics are covered by this class of Higgs poten-
tials. This holds true especially for the (minimal) Standard Model. We have the following
proposition.

Proposition 3.2. Let (P(M, G), ρH, VH) be the data defining a Yang-Mills–Higgs gauge
theory, where the Higgs potential is assumed to be rotationally symmetric. For every non-
vanishing state, Φ ∈ Γ(ξH) of the Higgs boson there exists a vacuum with respect to which
the state is in the unitary gauge.

6 Actually, this is a general feature if the symmetry breaking were supposed to be complete.
7 Note that we have put all physical constants, parameterizing the Higgs potential, equal to 1.
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Proof. SinceVH is assumed to be rotationally symmetric the orbit of a minimumz0 can
be identified with a sphereSN−1(r0) ⊂ R

N of radius r0 := r(z0). Consequently, we
have rk(ξH,phys) = 1. This holds true for any vacuum(Q, ι). In particular, with respect to
Φ ∈ Γ(ξH)\{O} we may define a vacuum(Qφ, ιφ) by

Vφ : M→ Orbit(z0), x �→ |z0|
‖Φ(x)‖Φ(x). (36)

Then, it follows from what we discussed before thatΦ is in the unitary gauge with respect
to the vacuum(Qφ, ιφ). �

Note that even ifP(M, G) is trivial the above statement does not necessarily imply the
existence of a unitary gauge transformation analogous to(33).

Let again(P(M, G), ρH, VH) be the data defining a Yang-Mills–Higgs gauge theory and
(Ξ,V) a vacuum pair that spontaneously breaks the gauge symmetry. With respect to the
original gauge groupG = Γ(ξAd(P )), we have the gauge boson geometrically represented
by the Hermitian vector bundleτ∗M ⊗ ξad(P ) and the Higgs boson byξH. With respect to
the invariance groupH = Γ(ξAd(Q)) of the vacuum(Q, ι) we have, respectively, the gauge
boson together with the Goldstone and the physical Higgs boson geometrically represented
by the Hermitian vector bundleτ∗M⊗ξYM , ξG andξH,phys. In addition we consider the vector
bundle

Q×H Lie(H)⊥ →M. (37)

This decomposes into the Whitney sum of eigenbundles ofV ∗M2
YM like ξH,physdecomposes

into the eigenbundles ofV ∗M2
H of nonvanishing masses. SinceWG 	 Lie(H)⊥ the physical

Higgs Dinner is geometrically described by the identity

ξad(Q) ⊕ (ξG ⊕ ξH,phys) = (ξad(Q) ⊕ ξG)⊕ ξH,phys. (38)

Notice thatξad(Q)⊕ξG, as a vector bundle, is naturally isomorphic to the Yang-Mills bundle
(16)and thus equivalent toξad(P ). Consequently, the Higgs Dinner does not refer to a gauge
condition. However, it always refers to a vacuum.

In the last section, we have defined the bosonic mass matrices and called their eigenval-
ues the “masses” of the bosons which are geometrically represented by the correspond-
ing eigenbundles of the mass matrices. This physical interpretation of the eigenvalues
usually refers to the field equation of “free bosons”. To also justify this physical in-
terpretation of the eigenvalues within our geometrical description we give the following
definition.

Definition 3.3. Let 0 ≤ t ≤ 1. A family of Yang-Mills–Higgs pairs(At, Φt) ∈ A(ξH) ×
Γ(ξH) is called a “fluctuation” of a vacuum pair(Ξ,V)provided there isΦH,phys∈ Γ(ξH,phys)

andA = AH ⊕ AG ∈ Ω1(M, Lie(H)⊕ Lie(H)⊥) such that

∂At = ∂ + tAH + tρ′G(AG) ≡ ∂
ad(Q)
AH,t + tρ′G(AG), (39)

Φt = V+ tΦH,phys. (40)
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Next, we note that the mass matricesV ∗M2
H,V ∗M2

YM split according to the decomposi-
tion of ξH,red, ξYM . That is, we have

V ∗M2
H = M2

G ⊕M2
H,phys, (41)

V ∗M2
YM = M2

YM ,H ⊕M2
YM ,G, (42)

where dim(im(M2
H,phys)) = dim(im(V ∗M2

H)) and dim(im(M2
YM ,G)) = dim(im(V ∗M2

YM ))

= dim(im(M2
G)).

Proposition 3.3. Let(Ξ,V) ∈ A(ξH)×Γ(ξH) be a vacuum pair that spontaneously breaks
the gauge symmetry of a Yang-Mills–Higgs gauge theory. Also, let (At, Φt) be a fluctuation
of the vacuum. Then, up to orderO(t2) the Euler–Lagrange equations in terms of the
fluctuation read

δad(Q)∂ad(Q)AH = 0, (43)

δEG∂EGAG +M2
YM ,GAG = 0, (44)

δEH,phys∂EH,physΦH,phys+M2
H,physΦH,phys= 0. (45)

Here, ∂ad(Q), ∂EG, ∂EH denote the induced flat covariant derivatives onξad(Q), ξG, ξH,phys,
respectively, andδad(Q), δEG, δEH are the appropriate co-derivatives.

Proof. The proof results from the usual variational calculation where one takes advantage
of the orthogonality of the Goldstone and the Higgs bundle and of the fact that the vacuum
section is covariantly constant. �

Notice that the fluctuationA is not compatible with the vacuum. Indeed, it is the de-
viation of (39) from being compatible with the vacuum that gives rise to the nontriviality
of V ∗M2

YM . Since the mass matrices commute with the connection, one may use an or-
thonormal eigenbasis of the bosonic mass matrices whereby the fieldequations (43)–(45)
read

δ∂AH,(k) = 0, (46)

δ∂AG,(l) +m2
YM ,G,lAG,(l) = 0, (47)

δ∂ΦH,phys,(j) +m2
H,phys,jΦH,phys,(j) = 0, (48)

wherek = 1, . . . , dim(H), l = 1, . . . , dim(WG) andj = 1, . . . , dim(WH,phys).
The fact that the connectionΞ is flat does not mean that the principal symbols of the

respective second order differential operators in(46)–(48)coincide with their symbols.
The symbol, however, is the geometrical object that corresponds to the physical quantity
of momenta (squared) of the appropriate particle. IfM is simply connected the principal
symbol coincides with the symbol and in this case we recover the usual field equations
of “free bosons”. In the slightly more general case we call solutions of the fieldequations
(46)–(48)quasi-free states. The corresponding line bundles generated by the eigenbasis of
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the bosonic mass matrices are interpreted asasymptotic(quasi)-free bosons. Of course, the
scale on which this interpretation holds is given by the parametert. Notice that the difference
between asymptotic quasi-free and asymptotic free bosons only results from the topology of
spacetime. In contrast, the difference between asymptotic free and free bosons results from
their “H-charge”. For instance, consider the electroweak sector of the Standard Model (see
the next section). In this case, the reduced gauge group equals the electromagnetic gauge
group. However, the physical Higgs boson turns out to be electrically uncharged and is thus
not only insensitive to an Ahoronov-Bohm like effect but can be geometrically represented
by a trivial Hermitian line bundle. This holds true even in the case where the underlying
electromagnetic vacuum(Q, ι) is nontrivial.

In the next section, we give a geometrical interpretation of the bosonic mass matrices as
“normal sections” of specific sub-manifolds.

4. Bosonic mass matrices and “normal bundles”

Let (Q, ι) be again a vacuum andV ∈ Γ(ξorbit(z0)) be the corresponding vacuum section.
We have already mentioned that the Goldstone bundleξG ⊂ ξH,red might be identified with
the vertical bundle ofOrbit(z0) along the vacuum sectionV. Likewise, one may consider
the physical Higgs bundleξH,phys⊂ ξH,red as the “normal bundle” ofOrbit(z0) ⊂ EH,red
along the vacuum sectionV. For this, we consider the (reduced) Higgs bundle as a vector
bundle over the (reduced) orbit bundle, i.e.

pr1 : π∗orbEH → Orbit(z0). (49)

Along a vacuum sectionV one has

π∗orbEG ⊕ π∗orbEH,phys→ im(V ) ⊂ Orbit(z0), (50)

whereπ∗orbEG = VOrbit(z0)|im(V) and the tangent bundle ofOrbit(z0) splits into

TOrbit(z0)|im(V) = im(dV )⊕ π∗orbEG. (51)

Thus,π∗orbEH,phys can be considered as the “normal bundle” of the reduced orbit bun-
dle. This permits to recover the well-known geometrical picture of the Goldstone boson
as being parallel and the physical Higgs boson as being orthogonal to the orbit (bundle).
The geometrical picture also illuminates why the spectrum of the global mass matrix of
the Higgs boson is constant, for it can be regarded as the parallel transport ofM2

H(z0)

along the specified vacuum. The Hessian of a general Higgs potential is constant along
the orbit and positive definite transversally. Thus, it does not come as a surprise that the
(global) mass matrix of the Higgs boson is related to the extrinsic curvature of the or-
bit (bundle). This is most easily exhibited in the case of a rotationally symmetric Higgs
potential.

For this, letVH(z) = fH(r(z)) ≡ fH(r) be rotationally symmetric (z ∈ R
N ). Let (Q, ι)

be again a vacuum that spontaneously breaks the gauge symmetry defined byP(M, G).
Also letV be the appropriate vacuum section on the reduced Higgs bundle. In the case of
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a rotationally symmetric Higgs potential, the nontrivial part of the (global) mass matrix of
the Higgs boson reads

M2
H,phys(x) = f ′′H(r0)e(x)∗ ⊗ e(x), (52)

where‖V(x)‖e(x) := V(x) ∈ EH,phys,x, e(x)∗ ∈ E∗H,phys,x the dual vector, andr0 ≡
r(z0) = ‖V(x)‖. The spectrum is given by spek(M2

H,phys) = {f ′′H(r0)} and the mass matrix

is related to an appropriate generalization of thesecond fundamental formof orbit(z0) ⊂ R
N

due to the formula

EG,x × EG,x → R, (u, w) �→ gG,x(M2
H(∂ue)(x), w) = f ′′H(r0)gG,x(u, w). (53)

Here,gG denotes the Hermitian product onEG, and∂ is understood as the covariant deriva-
tive on the pull-back bundleπ∗orbξH,red with respect to the flat connectionπ∗orbΞ. The for-
mula(53) generalizes the situation whereP(M, G) is supposed to be the trivial principal

G-bundleM×G
pr1→M. In this case, the above formula reduces to

WG ×WG → R, (u, w) �→ M2
H(z0)de(z0)u · w = f ′′H(r0)u · w (54)

which can be regarded as the fiber Hessian of the mapping

FH : R
N\{0} → R, z �→ gradVH(z) · e(z) = f ′H(r)r. (55)

Here, e(z) := z/‖z‖ ∈ SN−1. Notice thatF−1
H (0) equals the critical set of the Higgs

potential and that

gradFH(z) = M2
H(z)e(z). (56)

We shall recover a similar formula for the mass matrix of the gauge boson.
Before we proceed with discussing the geometrical meaning of the mass matrix of the

gauge boson, we would like to briefly comment on the situation of a general Higgs poten-
tial. The main point of a rotationally Higgs potential is that the codimension of the orbit is
equal to 1. Thus, the extrinsic geometry of the orbit bundle is determined by the variation
of the vacuum sectionV considered as a normalized eigensection of the mass matrix of the
Higgs boson. This variation in turn is determined by the (pseudo)Riemannian connection
that is induced by the flat connectionΞ. More precisely: the connectionΞ admits to lift the
(pseudo)Riemannian metricgM to the orbit bundle. This lifted (pseudo)metric determines a
corresponding connection, which together with the vacuum section defines theWeingarten
mapof the orbit bundle (along the vacuum section). The Weingarten map, however, de-
termines the extrinsic geometry of any sub-manifold (see, for instance[8]). In the case of
a general Higgs potential, the situation is more complicated since the codimension of the
orbit is greater than 1 in general. Therefore, in this case one has more than one normal
direction and the appropriate normal bundle is nontrivial. Moreover, in general there are no
distinguished normal sections determining the extrinsic geometry of the orbit bundle (c.f.
loc sit). However, along the vacuum section the eigensections of the mass matrix of the
Higgs boson give rise to a particular set of normal sections like in the case of a rotationally
symmetric Higgs potential. Therefore, along the vacuum section the extrinsic geometry of
the orbit bundle becomes determined by the mass matrix of the Higgs boson.8

8 The intrinsic geometry, of course, is again determined by the (pseudo)metricgM.
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To study the geometrical meaning of the mass matrix of the gauge boson, let(Q, ι)

be again a vacuum which spontaneously breaks the gauge symmetry that is defined by
P(M, G). Also, let (Ξ,V) be an appropriate vacuum pair andν ∈ C∞ρ-eq(P, R

N) be
the equivariant mapping that corresponds toV. That is,V(x) = [(p, ν(P ))]|

p∈π−1
P (x)

=
[(ι(q), z0)]|

q∈π−1
Q (x)

. Of course, the vacuum sectionV ∈ Γ(ξH) is always in the unitary

gauge with respect to itself. In other words, the vacuum section might be considered as a
section inξH,phys(where the latter is defined with respect to the vacuum(Q, ι)). Moreover,
the critical set associated with the vacuum sectionF−1

ν (0) ⊂ P coincides withι(Q). Since
the vacuum section is constant, the tangential mapping ofFν equals its fiber derivativeFFν.
The latter in turn coincides with the fiber Hessian ofΘν, which reads

F2Θν : VP×P VP→ R, (p, η1, η2) �→ ρ′(η1η2)z0 · ν(P ). (57)

Therefore, when restricted to the critical setF−1
ν (0) we obtain

dFν(ι(q))(w)η′ = −1
2β(M2

YM (z0)η, η′) (58)

for all η′ ∈ Lie(G). Here,η ∈ Lie(G) is determined as the vertical part ofw ∈ Tι(q)P with
respect to the connectionΞ. Notice that(58) is nonzero iffη, η′ ∈ Lie(H)⊥ 	 WG.

Like in the case of the Higgs bundle, we may consider the adjoint bundle as a vector
bundle overP . With respect to a given vacuum section this bundle decomposes as

π∗Pad(Q)⊕ π∗PEG → F−1
ν (0) ⊂ P. (59)

Notice that a general element ofπ∗Pad(Q) ⊕ π∗PEG reads(p = ι(q), τ, ρ′(η)z0), where
τ ∈ Lie(H) andη ∈ Lie(H)⊥.

When restricted toF−1
ν (0) the tangent bundle ofP splits into

TP|
F−1

ν (0)
= TF−1

ν (0)⊕ π∗PEG. (60)

Thus,π∗PEG → F−1
ν (0) can be regarded as the “normal” bundle ofF−1

ν (0) = ι(Q) ⊂ P .
Consequently, any tangent vectorw ∈ Tι(q)P decomposes asw = dι(q)u + wG, where
wG ∈ π∗PEG|ι(q) andu ∈ TqQ.

There is a natural fiber metric (also denoted byβ) on the bundle(59), such that(π∗Pad(Q)⊕
π∗PEG)|ι(q) is isometric to(Lie(G), β). For each directionw = (ι(q), w) ∈ TP|

F−1
ν (0)

, we
define the “gradient” ofFν by the relation

β(gradFν(ι(q))(w), ς) := dFν(ι(q))(w)ς (61)

for all ς ∈ (π∗Pad(Q) ⊕ π∗PEG)|ι(q). Then, the nontrivial part of the mass matrix of the
gauge boson reads

gradFν(wG) = −1
2ν∗M2

YM ,GwG (62)

which is analogous to(56).
Let (η1, . . . , ηdim(WG)) ∈ Lie(H)⊥ be aκG orthonormal eigenbasis of the nontrivial part

of M2
YM (z0). Correspondingly, letwG,1, . . . , wG,dim(WG) ∈ TP|

F−1
ν (0)

. Then,

gradFν(wG,l) = −1
2m2

YM ,G,lwG,l (63)
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and we obtain the known formula

m2
YM ,G,l = 2g2

phys,lgG(wG,l, wG,l). (64)

If G is not simple, the “physical coupling constant”gphys,l, in general, is a fractional function
of the Yang-Mills coupling constants depending on Lie(H) ⊂ Lie(G). In the case of our
previous example, whereG = U(1) andH = {1}, we obtain the usual formula for the
“massive photon”m = √2gphys,|z0|, wheregphys, is identified with the electric charge.

We have shown in this section that the bosonic mass matrices geometrically correspond
to “normal sections” (“gradients”) along the vacuum. Here, the vacuum is considered as
a sub-manifold either ofOrbit(z0) or of P . In the following section, we come back to the
unitary gauge. We discuss its existence in the case of the structure group of the electroweak
sector of the (minimal) Standard Model. We are aware that like in the example ofG =
U(1), this can be achieved in a more straightforward way than presented in the next section.
However, we again want to put emphasis on the geometrical background.

5. G = SU(2) × U (1)

In the preceding section, we discussed the existence of the unitary gauge in the case of the
electromagnetic gauge group. In this section, we present an analogous analysis for the more
realistic case of the electroweak gauge group of the bosonic part of the Standard Model.

Let (M, gM) be an arbitrary spacetime. The bosonic part of the Standard Model is fixed
by the Yang-Mills–Higgs gauge theory(P(M, G), ρH, VH), whereG := SU(2) × U(1)

is the well-known structure group of the electroweak sector of the Standard Model. To
simplify the notation we again put all physical parameters equal to 1. Up to an additive
constant the Higgs potential has the usual formVH(z) := (1− |z|2)2, wherez ∈ C

2. The
representationρH is defined byρH(g(2), g(1))z := g(2)g(1)z = g(1)g(2)z, whereg(1) ∈ U(1)

andg(2) ∈ SU(2).
The set of minima ofVH is equal to the three-sphereS3 ⊂ R

4. On the one hand, when
distinguishing a pointz0 ∈ S3, we may identify(S3, z0) with the group SU(2). On the other
hand, we may also identify(S3, z0) with orbit(z0). In fact, the isotropy group of an arbitrary
minimum z0, which is isomorphic toH ≡ Uelm(1), is generated byτ + i ∈ Lie(G) =
su(2)⊕ u(1). Note thatτ ∈ su(2) 	 R

3 ⊂ H (τ2 = −1) depends on the chosen minimum
z0. Geometrically, each minimum of the Higgs potential permits to distinguish a circleS1 ⊂
S3 ⊂ H, and the right action ofH ⊂ G on the electroweak structure group is given by

(SU(2)× U(1))× Uelm(1) → SU(2)× U(1),

((g(2), g(1)), h) �→ (g(2)h(2), g(1)h(1)). (65)

Here, we made use of the fact that every elementh ∈ Uelm(1) decomposes ash = h(2)h(1) =
h(1)h(2), whereh(2) := exp(τθ) ∈ SU(2) andh(1) := exp(iθ) ∈ U(1) (θ ∈ [0, 2π[). As
a consequence,(g(2), g(1)) is equivalent to(g(2)h

−1
(2), 1), whereh(2) := exp(τθ) for g(1) =

exp(iθ). Therefore, we may identifyG/H 	 orbit(z0) with SU(2) 	 (S3, z0). Moreover,
we have the following principalUelm(1)-bundle

G = SU(2)× U(1) → orbit(z0), (g(2), g(1)) �→ g(2)h
−1
(2)z0. (66)
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The crucial point is that this bundle is actually trivial. We have the following bundle iso-
morphism:

which is given byχ(g(2), g(1)) := (g(2)h
−1
(2)z0, h := h(2)h(1)), whereh(1) := g(1).

From the preceding section, we know that a nonvanishing stateΦ ∈ Γ(ξH) of the Higgs
boson is always in the unitary gauge with respect to the vacuum(Qφ, ιφ). Let us then suppose
thatP(M, G) is equivalent to the trivial principalG-bundle. Because of the triviality of
the principalUelm(1)-bundle(66), one can lift the corresponding vacuum sectionVφ to the
mapping

γ :M→ SU(2)× U(1), x �→ χ−1(νφ(x), 1) (67)

such thatVφ is gauge equivalent to the canonical vacuum section. Here,Vφ(x) = (x, νφ(x))

with νφ ∈ C∞(M, orbit(z0)) andι∗φΦ(x) = (x, ‖Φ(x)‖z0) ∈ EH,phys|x. Of course,EH,phys
is defined with respect to(Qφ, ιφ) and the embeddingιφ is defined by(67).

The mapping(67) defines the unitary gauge transformation similar to the case ofG =
U(1) discussed in the last section. Indeed, the triviality ofU(1) → orbit(z0) follows
immediately fromH = {1} and the identification ofU(1) with (S1, z0) 	 orbit(z0). No-
tice that in both examples the lifting property is independent of the topology ofM. In
general, if bothP(M, G) andG(orbit(z0), I(z0)) are trivial, then up to gauge equivalence
there exists only one vacuum(Q, ι) with respect to a given minimumz0. In particular, this
vacuum is trivial (i.e.Q(M, H) is also trivial). On the other hand, if we assume space-
time to be simply connected we know that the existence of vacuumpairs is equivalent to
the triviality of P(M, G). When we fix a minimumz0, all vacuum pairs(∂,V) are gauge
equivalent to(d, z0). In this case, only those vacuum sectionsV are permitted that give rise
to a lift similar to (67). In the particular case ofVφ this hold true, iffQφ(M, H) is also
trivial.

To summarize, ifP(M, G) is trivial, then a necessary condition for gauge inequiva-
lent vacua to exist with respect to a given minimumz0 is that the principalI(z0)-bundle
G(orbit(z0), I(z0)) is nontrivial. Whether this condition is also sufficient depends on the
topology of spacetime.

6. Summary and outlook

We geometrically described the possible ground states of the Higgs boson as sections in
the orbit bundle, which is associated with the data of a general Yang-Mills–Higgs gauge the-
ory. The notion of vacuum pairs has been used to geometrically describe the Higgs–Kibble
mechanism and the unitary gauge. We also gave a necessary and sufficient condition for
the existence of the unitary gauge in the case of rotationally symmetric Higgs potentials.
The notion of vacuum pairs also permits a geometrical interpretation of the bosonic mass
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matrices and the physical notion of “free” bosons also within the frame of gauge theories.
Moreover, since the notion of vacuum pairs geometrically generalize(d, z0) in the case
of the trivial principalG-bundle, it permits to relate the notion of mass to the topology
of spacetime. We gave a necessary and sufficient condition for the existence of vacuum
pairs in the case whereπ1(M) = 0. This case turned out to be particularly restrictive. It
would be interesting to also study less restrictive spacetime topologies giving rise to gauge
inequivalent vacuum pairs.

From a geometrical perspective, we have seen how the masses of the bosons are re-
lated to “normal vector fields” of sub-manifolds which are determined by the vacuum.
Likewise, it can be shown that the masses of the fermions together with the curvature of
spacetime, determine the “intrinsic curvature” of the bundles which geometrically represent
“free fermions”. This will be discussed within the geometrical frame of generalized Dirac
operators in a forthcoming paper.
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